FDT459N # N-Channel Enhancement Mode Field Effect Transistor ### **General Description** These N-Channel enhancement mode power field effect transistors are produced using Fairchild's proprietary, high cell density, DMOS technology. This very high density process is especially tailored to minimize on-state resistance, provide superior switching performance. These products are well suited to low voltage, low current applications such as notebook computer power management, battery powered circuits, and DC motor control. ### **Features** - $\begin{tabular}{ll} \blacksquare & 6.5~A,~30~V.~R_{DS(ON)} = 0.035 \Omega @V_{GS} = 10~V \\ & R_{DS(ON)} = 0.055~\Omega @V_{GS} = 4.5~V. \\ \end{tabular}$ - High density cell design for extremely low R_{DS(ON)}. - High power and current handling capability in a widely used surface mount package. # **Absolute Maximum Ratings** $T_A = 25^{\circ}C$ unless otherwise noted | Parameter | | FDT459N | Units | |--|--|---|---| | Drain-Source Voltage | | 30 | V | | Gate-Source Voltage - Continuous | | ±20 | V | | Maximum Drain Current - Continuous (Note 1a) | | 6.5 | А | | - Pulsed | | 20 | | | Maximum Power Dissipation | (Note 1a) | 3 | W | | | (Note 1b) | 1.3 | | | | (Note 1c) | 1.1 | | | Operating and Storage Temperature Range | | -55 to 150 | ~ | | L CHARACTERISTICS | | | | | Thermal Resistance, Junction-to-Am | nbient (Note 1a) | 42 | °C/W | | Thermal Resistance, Junction-to-Ca | SE (Note 1) | 12 | °C/W | | | Drain-Source Voltage Gate-Source Voltage - Continuous Maximum Drain Current - Continuou - Pulsed Maximum Power Dissipation Operating and Storage Temperature L CHARACTERISTICS Thermal Resistance, Junction-to-Am | Drain-Source Voltage Gate-Source Voltage - Continuous Maximum Drain Current - Continuous (Note 1a) - Pulsed Maximum Power Dissipation (Note 1a) (Note 1b) (Note 1c) Operating and Storage Temperature Range L CHARACTERISTICS Thermal Resistance, Junction-to-Ambient (Note 1a) | Drain-Source Voltage 30 Gate-Source Voltage - Continuous ±20 Maximum Drain Current - Continuous (Note 1a) 6.5 - Pulsed 20 Maximum Power Dissipation (Note 1a) (Note 1b) (Note 1b) 1.3 (Note 1c) (Note 1c) 1.1 Operating and Storage Temperature Range -55 to 150 L CHARACTERISTICS Thermal Resistance, Junction-to-Ambient (Note 1a) 42 | ^{*} Order option J23Z for cropped center drain lead. | Symbol | Parameter | Conditions | | Min | Тур | Max | Units | |----------------------------------|---|---|--|-----|-------|-------|-------| | OFF CHAR | ACTERISTICS | | | | | | | | BV _{DSS} | Drain-Source Breakdown Voltage | $V_{GS} = 0 \text{ V}, I_{D} = 250 \mu\text{A}$ | | 30 | | | V | | $\Delta BV_{DSS}/\Delta T_{J}$ | Breakdown Voltage Temp. Coefficient | $I_D = 250 \mu A$, Referenced to | I _D = 250 μA, Referenced to 25 °C | | 33 | | mV/°C | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 24 V, V _{GS} = 0 V | | | | 1 | μΑ | | | | | T _J =55℃ | | | 10 | μΑ | | GSSF | Gate - Body Leakage, Forward | $V_{GS} = 20 \text{ V}, V_{DS} = 0 \text{ V}$ | | | | 100 | nA | | GSSR | Gate - Body Leakage, Reverse | $V_{GS} = -20 \text{ V}, V_{DS} = 0 \text{ V}$ | | | | -100 | nA | | ON CHARA | CTERISTICS (Note 2) | · | | | | | | | / _{GS(th)} | Gate Threshold Voltage | $V_{DS} = V_{GS}, I_{D} = 250 \mu\text{A}$ | | 1 | 1.6 | 2 | ٧ | | $\Delta V_{GS(th)}/\Delta T_{J}$ | Gate Threshold Voltage Temp.Coefficient | $I_D = 250 \mu\text{A}$, Referenced to | 25 °C | | -4.2 | | mV/°C | | | Static Drain-Source On-Resistance | $V_{GS} = 10 \text{ V}, I_D = 6.5 \text{ A}$ | | | 0.031 | 0.035 | Ω | | | | | T _J =125℃ | | 0.044 | 0.06 | 1 | | | | $V_{GS} = 4.5 \text{ V}, I_D = 5.5 \text{ A}$ | | | 0.046 | 0.055 | | | D(ON) | On-State Drain Current | $V_{GS} = 10 \text{ V}, V_{DS} = 5 \text{ V}$ | | 20 | | | Α | | FS | Forward Transconductance | $V_{DS} = 10 \text{ V}, I_{D} = 6.5 \text{ A}$ | | | 16 | | S | | OYNAMIC C | HARACTERISTICS | · | | | | | | | O _{iss} | Input Capacitance | $V_{DS} = 15 \text{ V}, \ V_{GS} = 0 \text{ V},$
f = 1.0 MHz | | | 365 | | pF | | oss | Output Capacitance | | | | 210 | | pF | | C _{rss} | Reverse Transfer Capacitance | | | | 70 | | pF | | WITCHING | CHARACTERISTICS (Note 2) | | | | | | | | D(on) | Turn - On Delay Time | $V_{DD} = 15 \text{ V}, \ I_D = 1 \text{ A},$ $V_{GS} = 10 \text{ V}, \ R_{GEN} = 6 \Omega$ | | | 5.2 | 11 | ns | | | Turn - On Rise Time | | | | 8.2 | 16 | ns | | O(off) | Turn - Off Delay Time | | | | 6 | 12 | ns | | i | Turn - Off Fall Time | | | | 16 | 26 | ns | | Q_g | Total Gate Charge | $V_{DS} = 10 \text{ V}, I_D = 6.5 \text{ A}, V_{GS} = 10 \text{ V}$ | | | 12 | 17 | nC | | Q_{gs} | Gate-Source Charge | | | | 2.2 | | nC | | Q_{gd} | Gate-Drain Charge | | | | 3 | | nC | | PRAIN-SOU | RCE DIODE CHARACTERISTICS AND MA | XIMUM RATINGS | | | | • | | | S | Maximum Continuous Drain-Source Diode Forward Current | | | | | 2.5 | Α | | V _{SD} | Drain-Source Diode Forward Voltage | $V_{GS} = 0 \text{ V}, I_{S} = 2.5 \text{ A} \text{ (Note 2)}$ | | | 0.8 | 1.2 | V | Typical $\rm R_{\rm g,s}$ using the board layouts shown below on $\,$ FR-4 PCB in a still air environment: a. 42°C/W when mounted on a 1 in² pad of b. 95°C/W when mounted on a 0.066 in² c. 110°C/W when mounted on a 0.00123 in² pad of 2oz Cu. Scale 1:1 on letter size paper 2. Pulse Test: Pulse Width $\leq 300 \mu s$, Duty Cycle $\leq 2.0\%$ ^{1.} $R_{o,u}$ is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. $R_{o,u}$ is guaranteed by design while $\boldsymbol{R}_{\scriptscriptstyle \theta \text{CA}}$ is determined by the user's board design. # **Typical Electrical Characteristics** Figure 1. On-Region Characteristics. Figure 3. On-Resistance Variation with Temperature. T_J , JUNCTION TEMPERATURE (°C) Figure 5. Transfer Characteristics. Figure 2. On-Resistance Variation with Drain Current and Gate Voltage. Figure 4. On-Resistance Variation with Gate-to-Source Voltage. Figure 6. Body Diode Forward Voltage Variation with Source Current and Temperature. # **Typical Electrical Characteristics** Figure 7. Gate Charge Characteristics. Figure 8. Capacitance Characteristics. Figure 9. Maximum Safe Operating Area. Figure 10. Single Pulse Maximum Power Dissipation. Figure 11. Transient Thermal Response Curve. Note: Thermal characterization performed using the conditions described in note 1c. Transient thermal response will change depending on the circuit board design. #### **TRADEMARKS** The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks. FAST ® SMART START™ VCX^{TM} ACEx™ OPTOLOGIC™ STAR*POWER™ FASTr™ Bottomless™ OPTOPLANAR™ Stealth™ CoolFET™ FRFET™ PACMANTM SuperSOT™-3 CROSSVOLT™ GlobalOptoisolator™ POP™ SuperSOT™-6 DenseTrench™ GTO™ Power247™ $\mathsf{HiSeC^{\mathsf{TM}}}$ SuperSOT™-8 DOME™ PowerTrench® SyncFET™ ISOPLANAR™ EcoSPARK™ QFET™ TinyLogic™ E²CMOSTM LittleFET™ OS^{TM} EnSigna™ MicroFET™ TruTranslation™ QT Optoelectronics™ MicroPak™ UHC™ **FACT™** Quiet Series™ UltraFET® SILENT SWITCHER® STAR*POWER is used under license FACT Quiet Series™ #### **DISCLAIMER** FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY. FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS. NOR THE RIGHTS OF OTHERS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the MICROWIRE™ 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### PRODUCT STATUS DEFINITIONS # **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--------------------------|---------------------------|---| | Advance Information | Formative or
In Design | This datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary | First Production | This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | No Identification Needed | Full Production | This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design. | | Obsolete | Not In Production | This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only. |