July 2010 # FDZ3N513ZT # **Integrated NMOS and Schottky Diode** # **Features** - Monolithic NMOS and Schottky Diode - Ultra-small form factor 1mm x 1mm WLCSP - Max $r_{DS(on)}$ = 462 m Ω at V_{GS} = 4.5 V, I_D = 0.3 A - Max $r_{DS(on)}$ = 520 m Ω at V_{GS} = 3.2 V, I_D = 0.3 A - HBM ESD protection level > 2000V (Note3) - RoHS Compliant # **General Description** The FDZ3N513ZT is a monolithic NMOS/ Schottky combination (FETky) and is designed and wired to function as a discontinuous conduction mode (DCM) boost LED power train for mobile LED backlighting applications. # **Application** Boost Converter Power Train for single cell Li-ion LED backlighting WL-CSP 3D Bumps Facing Up View WL-CSP 3D Bumps Facing Down View WL-CSP 1.0X1.0 Bumps Facing Up View ### **Absolute Maximum Ratings** | Symbol | Parameter | Ratings | Units | | |----------------|---|---------------------------------------|----------|---| | V_{DS} | NMOS Drain to Source Voltage | | 30 | V | | V_{GS} | NMOS Gate to Source Voltage | | -0.3/5.5 | V | | P_{D} | Power Dissipation @ T _A = 25℃ | Dissipation @ $T_A = 25$ °C (Note 1a) | | W | | I _D | Maximum Continuous NMOS Drain Current (Note 1a) | | 1.1 | Α | | V_{RRM} | Schottky Repetitive Peak Reverse Voltage | | 25 | V | | I _O | Schottky Average Forward Current | | 0.3 | Α | | T_J, T_{STG} | Operating Junction and Storage Temperature | | -55/125 | C | | ESD | SD Electrostatic Discharge Protection CDM 2000 | | | V | ### **Thermal Characteristics** | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient - 1in², 2oz. Copper | (Note 1a) | 100 | €/W | |-----------------|---|-----------|-----|-----| | $R_{\theta JA}$ | Thermal Resistance, Junction to Ambient - Minimum Pad | (Note 1b) | 260 | €/W | ### **Package Marking and Ordering Information** | Part Number | Device Marking | Package | Reel Size | Tape Width | Quantity | |-------------|----------------|----------------|-----------|------------|------------| | FDZ3N513ZT | Z3 | WL-CSP 1.0X1.0 | 7" | 8mm | 5000 units | # **Electrical Characteristics** $T_J = 25 \text{ } \%$ unless otherwise noted | Symbol | Parameter | Test Conditions | Min | Тур | Max | Units | |--|--|--|-----|-----|-----|-------| | Off Chara | cteristics | | | | | | | BV _{DSS} | Drain to Source Breakdown Voltage | $I_D = 250 \mu A, V_{GS} = 0 V$ | 30 | | | V | | $\frac{\Delta BV_{DSS}}{\Delta T_{J}}$ | Breakdown Voltage Temperature
Coefficient | I _D = 250 μA, referenced to 25 °C | | 47 | | mV/℃ | | I _{DSS} | Zero Gate Voltage Drain Current | V _{DS} = 24 V, V _{GS} = 0 V | | | 1 | μА | | I _{GSS} | Gate to Source Leakage Current | $V_{GS} = +5 \text{ V/-}0.3 \text{ V}, V_{DS} = 0 \text{ V}$ | | | ±10 | μΑ | ### **On Characteristics** | $V_{GS(th)}$ | Gate to Source Threshold Voltage | $V_{GS} = V_{DS}, I_D = 250 \mu A$ | 0.5 | 0.7 | 1.5 | V | |--|---|--|-----|------|-----|---------| | $\frac{\Delta V_{GS(th)}}{\Delta T_J}$ | Gate to Source Threshold Voltage
Temperature Coefficient | I_D = 250 μ A, referenced to 25 $^{\circ}$ C | | -1.6 | | mV/℃ | | _ | rps(an) Drain to Source On Resistance | $V_{GS} = 4.5 \text{ V}, I_D = 0.3 \text{ A}$ | | 384 | 462 | mΩ | | ^I DS(on) | | $V_{GS} = 3.2 \text{ V}, I_D = 0.3 \text{ A}$ | | 410 | 520 | - III22 | | g _{FS} | Forward Transconductance | $V_{DS} = 5 \text{ V}, I_{D} = 0.3 \text{ A}$ | | 0.5 | | S | # **Dynamic Characteristics** | C _{iss} | Input Capacitance | 45.77.77 | 45 | 85 | pF | |------------------|------------------------------|--|-----|----|----| | C _{oss} | Output Capacitance | $V_{DS} = 15 \text{ V}, V_{GS} = 0 \text{ V},$
f = 1 MHz | 45 | 85 | pF | | C _{rss} | Reverse Transfer Capacitance | 1 - 1 1011 12 | 10 | 25 | pF | | R_g | Gate Resistance | | 2.0 | | Ω | # **Switching Characteristics** | t _{d(on)} | Turn-On Delay Time | | 3.1 | 10 | ns | |---------------------|---|--|-----|----|----| | t _r | Rise Time | $V_{DD} = 15 \text{ V}, I_D = 0.3 \text{ A}$ | 1.9 | 10 | ns | | t _{d(off)} | Turn-Off Delay Time | $V_{GS} = 5 \text{ V}, R_{GEN} = 6 \Omega$ | 9.6 | 20 | ns | | t _f | Fall Time | | 2.7 | 10 | ns | | Qg | Total Gate Charge (V _{GS} = 4.5 V) | ., | 1.0 | | nC | | Q_{gs} | Gate to Source Gate Charge | V _{DD} = 15 V
I _D = 0.3 A | 0.1 | | nC | | Q_{gd} | Gate to Drain "Miller" Charge | 1D = 0.3 A | 0.3 | | nC | #### **Drain-Source Diode Characteristics** | V_{SD} | Source to Drain Diode Forward Voltage | $V_{GS} = 0 \text{ V}, I_S = 0.3 \text{ A}$ (Note 2) | | 0.75 | 1.2 | V | |-----------------|---------------------------------------|--|--|------|-----|----| | t _{rr} | Reverse Recovery Time | 1 - 0 3 A di/dt - 100 A/ | | 16 | 29 | ns | | Q _{rr} | Reverse Recovery Charge | _F = 0.3 A, di/dt = 100 A/μs | | 6.0 | 10 | nC | ### **Schottky Diode Characteristics** | l _o | Reverse Leakage | V _R = 20 V | T _J = 25 ℃ | 15 | 30 | μΑ | |----------------|-----------------|-------------------------|-----------------------|------|-----|----| | 'R | Neverse Leakage | v _R = 20 v | T _J = 85 ℃ | 300 | | μΑ | | V | Forward Voltage | I _F = 300 mA | T _J = 25 ℃ | 0.72 | 1.2 | \/ | | ٧F | ward voilage | 1F = 300 MA | T _J = 85 ℃ | 0.74 | | V | #### Notes: ^{1.} R_{0JA} is determined with the device mounted on a 1 in² oz. copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0JA} is determined by the user's board design. a. 100 °C/W when mounted on a 1 in² pad of 2 oz copper. b. 260 °C/W when mounted on a minimum pad of 2 oz copper. ^{2.} Pulse Test: Pulse Width < 300 $\mu s,$ Duty cycle < 2.0%. ^{3.} The diode connected between the gate and source serves only as protection ESD. No gate overvoltage rating is implied. # Typical Characteristics T_J = 25℃ unless otherwise noted Figure 1. On Region Characteristics Figure 3. Normalized On Resistance vs Junction Temperature Figure 5. Transfer Characteristics Figure 2. Normalized On-Resistance vs Drain Current and Gate Voltage Figure 4. On-Resistance vs Gate to Source Voltage Figure 6. Source to Drain Diode Forward Voltage vs Source Current # **Typical Characteristics** T_J = 25℃ unless otherwise noted Figure 7. Gate Charge Characteristics Figure 9. Forward Bias Safe Operating Area Figure 11. Schottky Diode Reverse Current Figure 8. Capacitance vs Drain to Source Voltage Figure 10. Gate Leakage Current vs Gate to Source Voltage Figure 12. Schottky Diode Forward Voltage # Typical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted Figure 13. Single Pulse Maximum Power Dissipation Figure 14. Junction-to-Ambient Transient Thermal Response Curve # **Dimensional Outline and Pad Layout** TOP VIEW # RECOMMENDED LAND PATTERN (NSMD PAD TYPE) SIDE VIEWS **BOTTOM VIEW** ### NOTES: - A. NO JEDEC REGISTRATION APPLIES. - B. DIMENSIONS ARE IN MILLIMETERS. - C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 1994. - DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS. - E. PACKAGE NOMINAL HEIGHT IS 582 MICRONS ±43 MICRONS (539-625 MICRONS). F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET. ### **Product Specific Dimensions** | Product | D | E | Х | Y | |---------------|----------------|----------------|-------|-------| | FDZ3N513ZTUCX | 1.000 +/-0.030 | 1.000 +/-0.030 | 0.018 | 0.018 | #### **TRADEMARKS** The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks. $\begin{array}{lll} \mathsf{AccuPower^{\mathsf{TM}}} & & \mathsf{F-PFS^{\mathsf{TM}}} \\ \mathsf{Auto-SPM^{\mathsf{TM}}} & & \mathsf{FRFET}^{\otimes} \\ \end{array}$ Build it Now™ Global Power Resource SM CorePLUS™ Green FPS™ CorePOWER™ Green FPS™ e-Series™ CROSSVOLT™ Gmax™ CTL™ GTO™ Current Transfer Logic™ IntelliMAX™ DEUXPEED® ISOPLANAR™ Dual Cool™ MegaBuck™ EcoSPARK® MICROCOUPLER™ EfficientMax™ MicroFET™ ESBC™ MicroPak™ Fairchild[®] Fairchild Semiconductor[®] FACT Quiet Series[™] FACT[®] FAST[®] FastvCore™ FETBench™ FlashWriter®* FlashWriter[®]* FPS™ Power-SPM™ PowerTrench® PowerXS™ Programmable Active Droop™ QFĔT[®] QS™ Quiet Series™ RapidConfigure™ Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMaxTM SMART STARTTM SPM[®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS™ SyncFET™ Sync-Lock™ The Power Franchise the Power Franchise franchise TinyBoostTM TinyBuckTM TinyCalcTM TinyCogic TINYOPTOTM TinyPowerTM TinyPWMTM TinyPWMTTM TinyWireTM TriFault DetectTM TRUECURRENT^{TM*} µSerDesTM UHC® Ultra FRFET™ UniFET™ VCX™ VisualMax™ YSTM * Trademarks of System General Corporation, used under license by Fairchild Semiconductor. MicroPak2™ MillerDrive™ MotionMax™ OptoHiT™ PDP SPM™ Motion-SPM™ OPTOLOGIC® OPTOPLANAR® #### DISCLAIMER FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION. #### As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user. - A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. #### **ANTI-COUNTERFEITING POLICY** Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support. Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors. #### PRODUCT STATUS DEFINITIONS #### **Definition of Terms** | Datasheet Identification | Product Status | Definition | |--|-----------------------|---| | Advance Information | Formative / In Design | Datasheet contains the design specifications for product development. Specifications may change in any manner without notice. | | Preliminary First Production | | Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design. | | No Identification Needed Full Production | | Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design. | | Obsolete | Not In Production | Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only. | Rev. 148