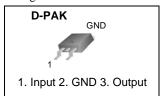
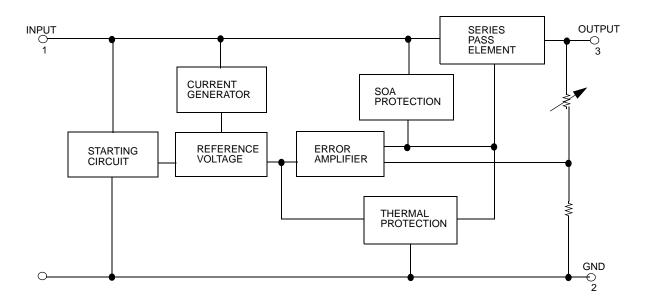


MC78XXE


3-Terminal 1A Positive Voltage Regulator

Features


- Output Current up to 1A
- Output Voltages of 5, 12V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The MC78XXE series of three terminal positive regulators are available in the D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Internal Block Digram

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit
Input Voltage (for V _O = 5V to 18V)	Vı	35	V
Operating Temperature Range	TOPR	0 ~ +125	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Electrical Characteristics (MC7805E)

(Refer to test circuit $,0^{\circ}$ C < TJ < 125° C, IO = 500mA, VI = 10V, CI= 0.33μ F, CO= 0.1μ F, unless otherwise specified)

Devemeter	Cumbal	Conditions		MC7805E/LM7805E			Unit
Parameter	Symbol			Min.	Тур.	Max.	Unit
		$T_{J} = +25^{\circ}C$ 5.0mA \le Io \le 1.0A, PO \le 15W VI = 7V to 20V		4.8	5.0	5.2	
Output Voltage	Vo			4.75	5.0	5.25	V
Line Regulation (Note1)	Regline	TJ = +25°C	V _O = 7V to 25V	-	4.0	100	mV
Line Regulation (Note I)	Regime	IJ = +25°C	V _I = 8V to 12V	-	1.6	50	
			Io = 5.0mA to1.5A	-	9	100	mV
Load Regulation (Note1) Regl	Regload	Regload T _J = +25°C	I _O =250mA to 750mA	-	4	50	
Quiescent Current	IQ	T _J = +25°C		-	5.0	8.0	mA
Quiocoont Current Change	AIO.	$\Delta IQ = 5mA \text{ to } 1.0A$ $V_I = 7V \text{ to } 25V$		-	0.03	0.5	mΛ
Quiescent Current Change	ΔIQ			-	0.3	1.3	mA
Output Voltage Drift (Note2)	ΔV0/ΔΤ	IO = 5mA		-	-0.8	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100kHz, T _A = +25°C		-	42	-	μV/Vo
Ripple Rejection (Note2)	RR	f = 120Hz V _O = 8V to 18V		62	73	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ =+25°C		-	2	-	V
Output Resistance (Note2)	rO	f = 1kHz		-	15	-	mΩ
Short Circuit Current	Isc	VI = 35V, TA =+25°C		-	230	-	mA
Peak Current (Note2)	IPK	T _J = +25°C		-	2.2	-	Α

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Changes in V₀ due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{2.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (MC7812E)

(Refer to test circuit ,0°C < TJ < 125°C, IO = 500mA, VI =19V, CI= $0.33\mu F$, CO= $0.1\mu F$, unless otherwise specified)

Parameter	Cumbal	Conditions		MC7812E			I Imit
Parameter	Symbol			Min.	Тур.	Max.	Unit
		T _J = +25°C		11.5	12	12.5	12.5 12.6
Output Voltage	Vo	$5.0 \text{mA} \le I_O \le 1.0 \text{A}, P_O \le 15 \text{W}$ VI = 14.5V to 27V		11.4	12	12.6	
Line Regulation (Note1)	Regline	T _J = +25°C	V _I = 14.5V to 30V	-	10	240	mV
			VI = 16V to 22V	-	3.0	120	
Load Population (Note1)	Poglood	T _J = +25°C	I _O = 5mA to 1.5A	-	11	240	- mV
Load Regulation (Note1)	Regload	1J = +25°C	IO = 250mA to 750mA	-	5.0	120	
Quiescent Current	IQ	T _J = +25°C		-	5.1	8.0	mA
Quiocoont Current Change	IO = 5mA to 1.0A		1	-	0.1	0.5	mA
Quiescent Current Change △IQ		V _I = 14.5V to 30V		-	0.5	1.0	IIIA
Output Voltage Drift (Note2)	ΔVο/ΔΤ	IO = 5mA		-	-1	-	mV/°C
Output Noise Voltage	VN	f = 10Hz to 100kHz, T _A = +25°C		-	76	-	μV/Vo
Ripple Rejection (Note2)	RR	f = 120Hz V _I = 15V to 25V		55	71	-	dB
Dropout Voltage	VDrop	IO = 1A, TJ = +25°C		-	2	-	V
Output Resistance (Note2)	ro	f = 1kHz		-	18	-	mΩ
Short Circuit Current	Isc	V _I = 35V, T _A = +25°C		-	230	-	mA
Peak Current (Note2)	lpk	T _J = +25°C		-	2.2	-	Α

Note:

^{1.} Load and line regulation are specified at constant junction temperature. Changes in Vo due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{2.} These parameters, although guaranteed, are not 100% tested in production.

Typical Perfomance Characteristics

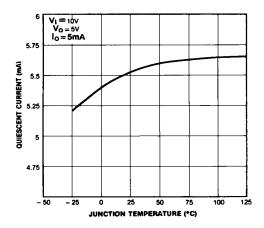


Figure 1. Quiescent Current

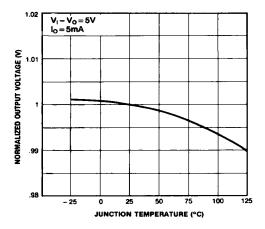


Figure 3. Output Voltage

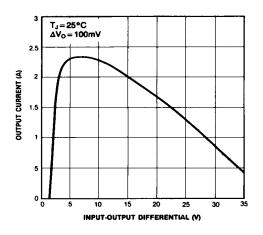


Figure 2. Peak Output Current

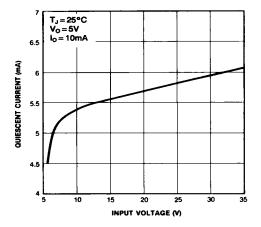


Figure 4. Quiescent Current

Typical Applications

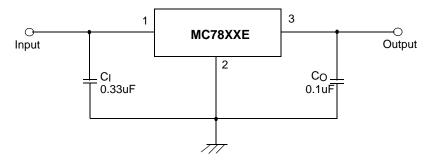


Figure 5. DC Parameters

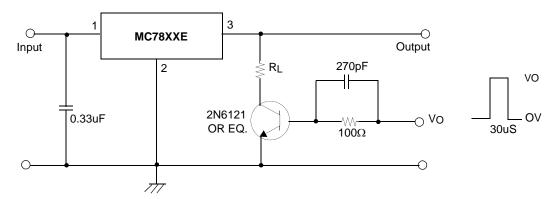


Figure 6. Load Regulation

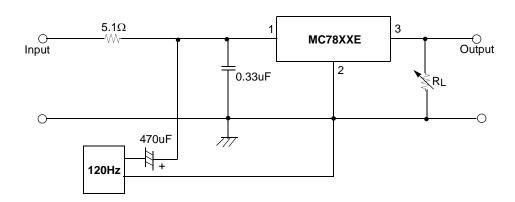


Figure 7. Ripple Rejection

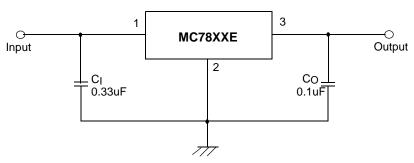


Figure 8. Fixed Output Regulator

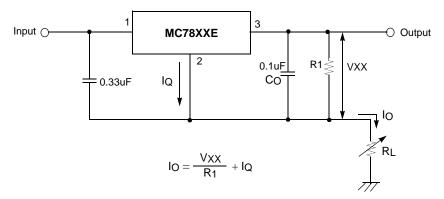


Figure 9. Constant Current Regulator

Notes:

- (1) To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- (2) C_I is required if regulator is located an appreciable distance from power Supply filter.
- (3) Co improves stability and transient response.

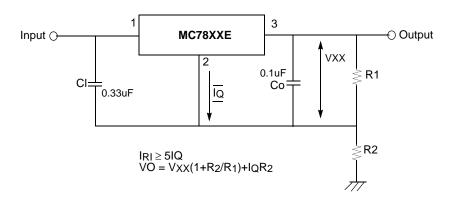


Figure 10. Circuit for Increasing Output Voltage

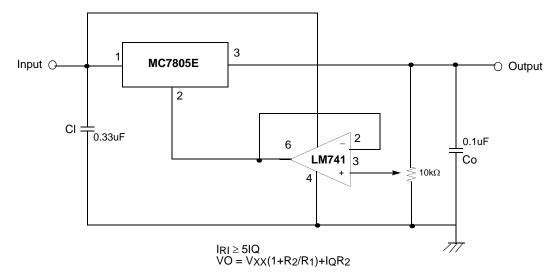


Figure 11. Adjustable Output Regulator (7 to 30V)

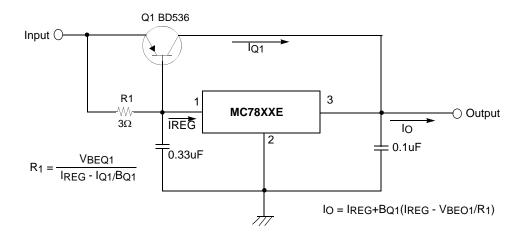


Figure 12. High Current Voltage Regulator

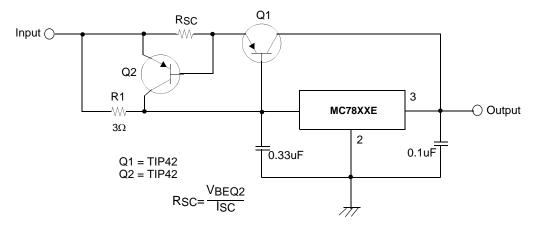


Figure 13. High Output Current with Short Circuit Protection

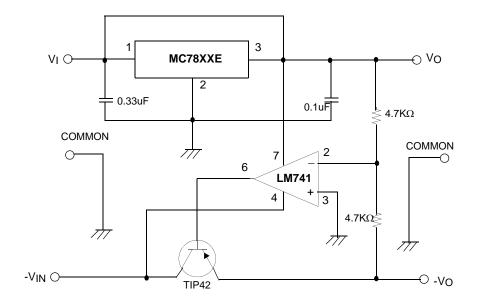


Figure 14. Tracking Voltage Regulator

Figure 15. Split Power Supply (±15V-1A)

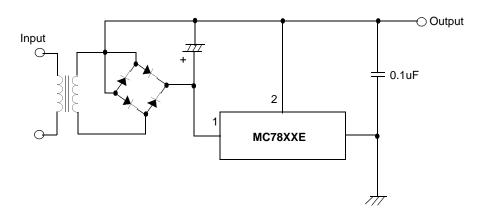
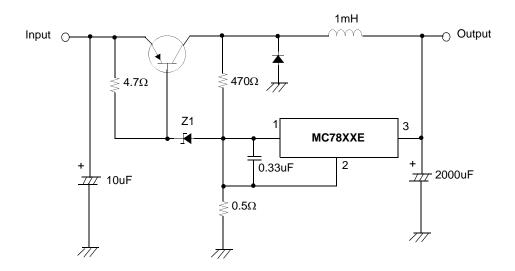
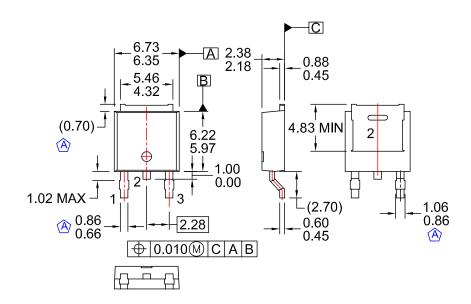


Figure 16. Negative Output Voltage Circuit




Figure 17. Switching Regulator

Mechancal Dimensions

Package

Dimensions in millimeters

D-PAK

NOTES: UNLESS OTHERWISE SPECIFIED

- (A) CONFORMS TO JEDEC TO-252 VARIATION AB EXCEPT WHERE NOTED
- B) ALL DIMENSIONS ARE IN MILLIMETERS.
- C) DRAWING CONFORMS TO ASME Y14.5M-1994
- D) DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS.
- E) FORMERLY NAMED BD1733
- F) DRAWING FILE NAME: MKT-TO252D03REV1

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature			
MC7805ECDTX	±4%	D-PAK	0 ~ +125°C			
MC7812ECDTX	±4 /0	D-FAR	0 ~ +123 C			

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com