Old Company Name in Catalogs and Other Documents

On April 1st, 2010, NEC Electronics Corporation merged with Renesas Technology Corporation, and Renesas Electronics Corporation took over all the business of both companies. Therefore, although the old company name remains in this document, it is a valid Renesas Electronics document. We appreciate your understanding.

Renesas Electronics website: http://www.renesas.com

April 1st, 2010 Renesas Electronics Corporation

Issued by: Renesas Electronics Corporation (http://www.renesas.com)

Send any inquiries to http://www.renesas.com/inquiry.

Notice

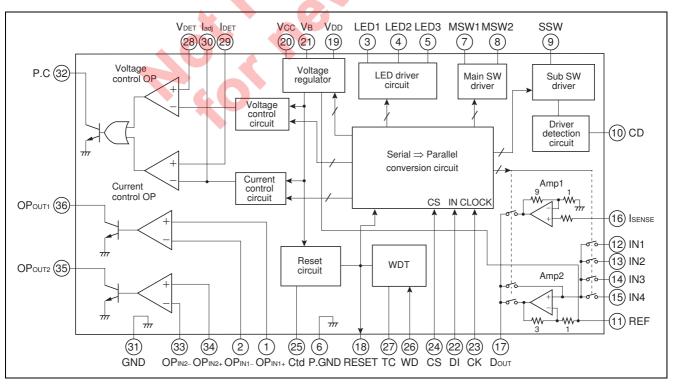
- 1. All information included in this document is current as of the date this document is issued. Such information, however, is subject to change without any prior notice. Before purchasing or using any Renesas Electronics products listed herein, please confirm the latest product information with a Renesas Electronics sales office. Also, please pay regular and careful attention to additional and different information to be disclosed by Renesas Electronics such as that disclosed through our website.
- Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
- 3. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
- 4. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software, and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from the use of these circuits, software, or information.
- 5. When exporting the products or technology described in this document, you should comply with the applicable export control laws and regulations and follow the procedures required by such laws and regulations. You should not use Renesas Electronics products or the technology described in this document for any purpose relating to military applications or use by the military, including but not limited to the development of weapons of mass destruction. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations.
- 6. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages incurred by you resulting from errors in or omissions from the information included herein.
- 7. Renesas Electronics products are classified according to the following three quality grades: "Standard", "High Quality", and "Specific". The recommended applications for each Renesas Electronics product depends on the product's quality grade, as indicated below. You must check the quality grade of each Renesas Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any application categorized as "Specific" without the prior written consent of Renesas Electronics. Further, you may not use any Renesas Electronics. Renesas Electronics product for any application for which it is not intended without the prior written consent of Renesas incurred by you or third parties arising from the use of any Renesas Electronics product for an application categorized as "Specific" or for which the product is not intended where you have failed to obtain the prior written consent of Renesas Electronics. The quality grade of each Renesas Electronics product is "Standard" unless otherwise expressly specified in a Renesas Electronics data sheets or data books, etc.
 - "Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots.
 - "High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anticrime systems; safety equipment; and medical equipment not specifically designed for life support.
 - "Specific": Aircraft; aerospace equipment; submersible repeaters; nuclear reactor control systems; medical equipment or systems for life support (e.g. artificial life support devices or systems), surgical implantations, or healthcare intervention (e.g. excision, etc.), and any other applications or purposes that pose a direct threat to human life.
- 8. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics, especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or damages arising out of the use of Renesas Electronics products beyond such specified ranges.
- 9. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further, Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult, please evaluate the safety of the final products or system manufactured by you.
- 10. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive. Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws and regulations.
- 11. This document may not be reproduced or duplicated, in any form, in whole or in part, without prior written consent of Renesas Electronics.
- 12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products, or if you have any other inquiries.
- (Note 1) "Renesas Electronics" as used in this document means Renesas Electronics Corporation and also includes its majorityowned subsidiaries.
- (Note 2) "Renesas Electronics product(s)" means any product developed or manufactured by or for Renesas Electronics.

M62254FP Standard Battery Charger Controller

REJ03F0244-0200 Rev.2.00 Jun 16, 2008

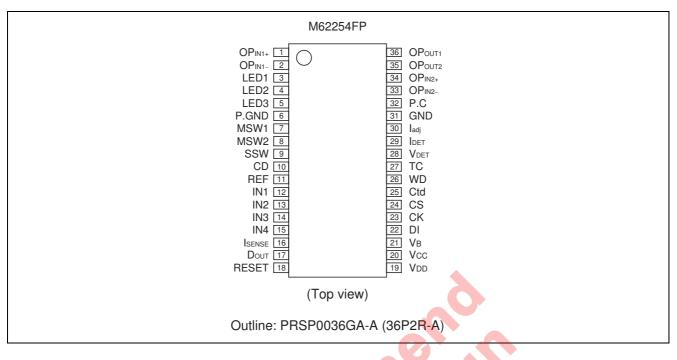
Description

The M62254FP is designed as standard battery charger controller. The M62254FP has functions which require for the battery charge control on single chip. Not only the combination of M62254 and MCU capable of handling battery charge control, but also it is capable of monitoring battery temperature, prevent from over current or voltage, using minimal peripherals. It also has feedback function to the primary source of SW power supply, which can used to control feedback of charge current and output voltage.


Features

- Built-in reset circuit and WDT function
- Built-in multiplexer and level magnification circuit with 4 input ports
- Built-in two standard stand alone OP-amp
- Built-in sub-switch circuit with feedback function
- Built-in 3 line serial data interface function
- Built-in low input/output operation 5 V voltage regulator function
- Built-in charge current/output voltage control circuit

Applications


Video camera, mobile phone and general battery charger for other digital equipments

Block Diagram

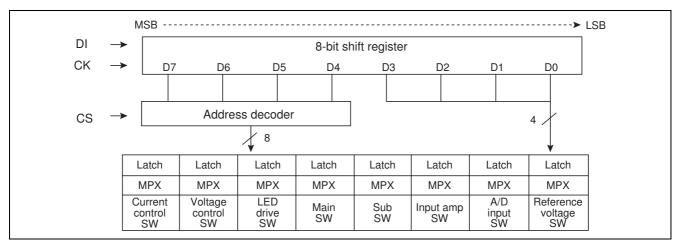
RENESAS

Pin Arrangement

Pin Description

Pin No.	Pin Name	Function
24	CS	The serial data input pin which used to receives 8-bit wide serial data.
23	СК	The shift clock input pin which takes the input signal of DI pin to 8-bit shift register by the
		rising edge of the clock signal.
22	DI	When CS pin is "Low", this pin can receive the data into the 8-bit shift register. The each
		bit will be latched at rising edge of the clock signal.
17	D _{OUT}	The output pin of the amplified A/D input.
11	REF	The reference voltage output pin of the A/D converter.
12 to 15	IN1 to IN4	The A/D converter input pin.
16		The current sense input pin.
10	CD	The input pin for the current detection to feedback of sub-switch driver.
9	SSW	The sub-switch driver output pin.
7, 8	MSW1, MSW2	The main switch driver output pin. (Open collector)
3 to 5	LED1 to LED3	The LED driver output pin. (Open collector)
19	V _{DD}	The stabilized +5 V output pin.
21	V _B	The pre-drive pin which used to connect the external PNP Tr.
20	Vcc	The power supply pin.
29	I _{DET}	The current detection input pin.
30	I _{adj}	The input pin for current detection adjustment.
28	V _{DET}	The voltage detection input pin.
32	P.C	The feedback pin for voltage and current control.
2, 33	OP _{IN1-} , OP _{IN2-}	The inverted input pin of OP-amp.
1, 34	OP _{IN1+} , OP _{IN2+}	The non-inverted input pin of OP-amp.
36, 35	OP _{OUT1} , OP _{OUT2}	The OP-amp. output pin. (Open collector output)
31	GND	The ground pin.
6	P.GND	The ground pin of power unit. (Main switch driver and LED driver)
18	RESET	The output pin of Reset and WDT. (Pulled up to V _{DD})
27	TC	The pin used to connect capacitor to determine the time constant of WDT.
26	WD	The input pin of the WDT.
25	Ctd	The pin used to connect capacitor to determine delay time the output after the Reset.

RENESAS


Absolute Maximum Ratings

Items	Symbols	Ratings	Unit
Power supply voltage	Vcc	16	V
Main switch drive current	I _{SW}	200	mA
Sub switch drive current	I _{SUB}	-5	mA
LED drive current	I _{LED}	30	mA
Regulator output current	IB	20	mA
P.C drive current	I _{PC}	10	mA
Main switch maximum voltage	V _{SW}	Vcc	V
Sub switch maximum voltage	V _{SUB}	Vcc	V
LED maximum drive voltage	V _{LED}	Vcc	V
P.C maximum voltage	V _{PC}	Vcc	V
Power dissipation	Pd	650	mW
Thermal derating ratio	Kθ	6.5	mW/°C
Operating temperature	Topr	-20 to +85	°C
Storage temperature	Tstg	-40 to +125	٥C

Electrical Characteristics

							pecified otherwise)
Block	Item	Symbol	Min	Тур	Max	Unit	Test Conditions
	Power supply voltage	Vcc	$V_{DD} + 0.2$	—	15	V	
	Circuit current	lcc	—	15		mA	
	Stabilized voltage output	V _{DD}	4.75	5.00	5.25	V	I _B = 10 mA
ē.	Input variable ratio	Reg-in		50	200	mV	V _{DD} + 0.2 V
voc	Load variable ratio	Reg-L	_	10	100	mV	$I_{DD} = 1$ to 100 mA
5 V power supply	Ripple remove ratio	R.R	—	60	—	dB	f = 120 Hz, Vin = 0 dBm
	Min I/O voltage difference	V_{DEF}	—	0.2	_	V	
	V _{DD} detection voltage	V _{TH1}	4.05	4.25	4.45	V	
	Hysteresis voltage	ΔV_{TH1}	30	50	80	mV	
	WD input current	I _{WD}	_	0.15		mA	$V_{WD} = +5 V$
	WD "H" input voltage	V _{WDH}	3.5	—		V	
F	WD "L" input voltage	V _{WDL}	_	—	1.5	V	
ШS Ш	TC charge current	I _{TCH}	—	25	<u> </u>	μA	
HE	TC discharge current	I _{TCL}	_	100	0-	μA	
WDT/RESET	Reset output saturation voltage	V _{RESL}	—	0.2	0.4	V	I _{RES} = 1 mA
	WDT time	t _{WD}	—	1 × 10 ⁵ Ст	—	s	
	Reset timer time	t _{RT}	_	$2.5 \times 10^4 C_T$	G Y	S	
	Reset output delay time	td	_	2 × 10 ⁵ Ctd		S	
	Min input pulse width	twdin (MIN)	5	10	20	μS	
	Main SW "L" output voltage	Vsat _M		0.8	1.2	V	I _M = 50 mA
/er	Sub SW "L" output voltage	Vsats	C	0.8	1.2	V	I _S = 5 mA
Driver	LED "L" output voltage	Vsat⊾ 🦰	_	0.8	1.2	V	$I_{LED} = 20 \text{ mA}$
	Sub SW detection voltage	V _{CD}	—	1.0		V	
0	Input voltage range	VIN	0	—	$V_{CC}-2$	V	
Control OP	Input bias current			—	_	μA	
Ŭ -	P.C "L" output voltage	VPCL		0.2	0.4	V	$I_{PC} = 5 \text{ mA}$
	Input offset voltage	V _{lo}	-	2	7	mV	
	Input bias current	I _{IB}	-100	—	_	nA	
ġ	Input offset current	l _{io}	—	—	100	nA	
4mA	Phase input range	VICM	-0.3	—	$V_{CC}-2$	V	
OP-Am	Open loop gain	AV	80	—		dB	
0	Slew rate	SR	—	—	_	V/µs	
	Output voltage range	V _{OR}	0.2	4	V _{CC}	V	
	Output sink current	lsink	20		—	mA	
ag.	ISENSE input voltage range	VISENSE	—	—	0.5	V	
Ň	IN input voltage range	V _{IN}	0.2	—	5	V	$Vcc \ge 7 V$
Voltage Mag.			0.2	—	3.5	V	Vcc = 5.5 V
Vol	IN input current	I _{IN}	-100			nA	

Digital Data Format

Data Setting

	Address		Data						
Control Function	D7	D6	D5	D4	D3	D2	D1	D0	Description
RESET	0	0	0	0	_	—	—		All SW is OFF
									A/D reference voltage = 0.4 V
									Voltage setting reference voltage = 4.0 V
Current control	0	0	0	1		7		—	See table 1
Voltage control	0	0	1	0	—	Ţ			See table 2
LED driver select	0	0	1	1					See table 3
Main SW	0	1	0	0) —	J		See table 4
Sub SW	0	1	0	1		_	C	_	See table 5
Amp. select	0	1	1	0		T	_	_	See table 6
A/D input select	0	1	1	1	-	T.	_	_	See table 7
A/D reference select	1	0	0	0	1			_	See table 8

Table 1 Current Control Data

D3	D2	D1	D 0	Current Control OP-Amp Input Voltage	Current Ratio
0	0	0	0	0 V	0
0	0	0	1	20 mV	1/16
0	0	1	0	40 mV	1/8
0	0	1	1	80 mV	1/4
0	1	0	0	160 mV	1/2
0	1	0	1	240 mV	3/4
0	1	1	0	320 mV	1
0	1	1	1	_	Trickle

Note: During trickle charge, use constant voltage mode and charge directly to the battery using external resistor. 20 mV is selected at RESET.

Table 2 Voltage Control Data

D3	D2	D1	D0	Voltage Control OP-Amp Input Voltage	Voltage Ratio
0	0	0	0	0 V	10
0	0	0	1	0.4 V	1
0	0	1	0	0.8 V	2
0	0	1	1	1.2 V	3
0	1	0	0	1.6 V	4
0	1	0	1	2.0 V	5
0	1	1	0	2.4 V	6
0	1	1	1	2.8 V	7
1	0	0	0	3.2 V	8
1	0	0	1	3.6 V	9
1	0	1	0	4.0 V	10
1	0	1	1	4.4 V	11
1	1	0	0	4.8 V	12

Note: Output port of MCU can be used to control the voltage and current settings. 4.0 V is selected at RESET.

Table 3 LED Driver Select

D2	D1	D0	LED3	LED2	LED1
0	0	0	OFF	OFF	OFF
0	0	1	OFF	OFF	ON
0	1	0	OFF	ON	OFF
0	1	1	OFF	ON	ON
1	0	0	ON	OFF	OFF
1	0	1	ON	OFF	ON
1	1	0	ON	ON	OFF
1	1		ON	ON	ON

Table 4 Main SW

D1	D0	SW1	SW2
0	0	OFF	OFF
0	1	OFF	ON
1	0	ON	OFF
1	1	Not s	elect

Table 5 Sub SW

D0	SW
0	OFF
1	ON

Table 6 Amp. Select

D1	D0	State
0	0	Select Amp1 output
0	1	Select Amp2 input
1	0	Select Amp2 output

Note: Amp1 output is selected at RESET.

Table 7 A/D Input Select

D1	D0	State
0	0	Select input 1
0	1	Select input 2
1	0	Select input 3
1	1	Select input 4

Note: Input 1 is selected at RESET.

Table 8 A/D Reference Voltage Select

D3	D2	D1	D0	State
0	0	0	0	Select 0 V
0	0	0	1	Select 0.4 V
0	0	1	0	Select 0.8 V
0	0	1	1	Select 1.2 V
0	1	0	0	Select 1.6 V
0	1	0	1	Select 2.0 V
0	1	1	0	Select 2.4 V
0	1	1	1	Select 2.8 V
1	0	0	0	Select 3.2 V
1	0	0	1	Select 3.6 V
1	0	1	0	Select 4.0 V
1	0	1	1	Select 4.4 V
1	1	0	0	Select 4.8 V

Note: 0.4 V is selected at RESET.

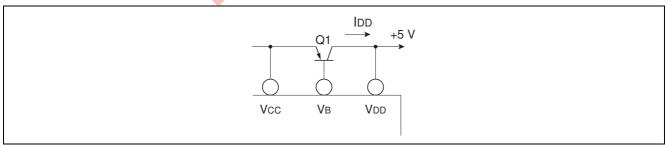
Note: All outputs will be OFF at RESET.

Function Block Descriptions

Voltage regulator

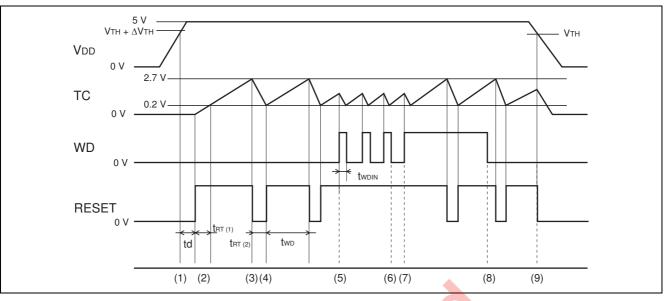
(1) A/D converter input

reference voltage 0.4 V Note: Connect few 1000 pF capacitor to stabilize the reference voltage.

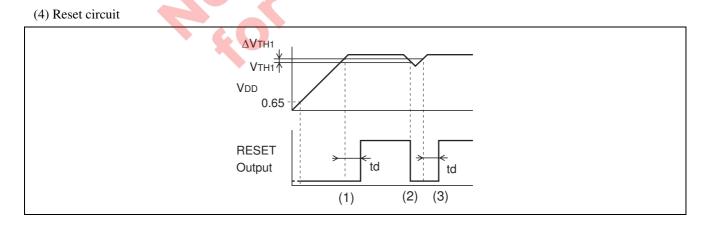

Select the desire reference voltage to be detected by serial data from the MCU.

4.8 V

The input voltage level of IN1 to IN4 will be magnified 4 times using selected reference voltage as a center. This magnified data will be return to the A/D input port of the MCU. As result, accuracy of the A/D converter of the MCU will be increased by 2-bit.


REF

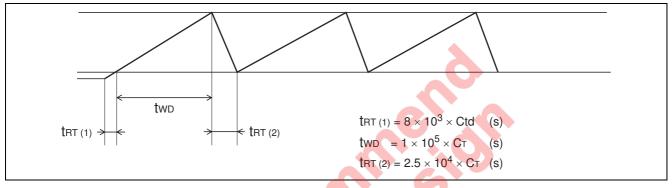
(2) +5 V voltage regulator



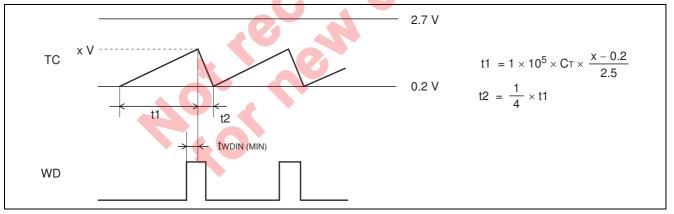
Since it is capable of driving external PNP Tr. base up to 20 mA, it can supply current of $I_{DD MAX} = 20 \text{ mA} \times Q1h_{FE}$. Also, since this is low I/O type power source, it can operate $V_{CC MIN} = V_{CC} - V_{DD} = 0.1 \text{ V}$.

(3) Watchdog timer

- (1) When V_{DD} reaches 4.75 V ($V_{TH1} + \Delta V_{TH1}$); after fixed amount of time (td), Reset pin outputs "High" and begin charging of the capacitor connected TC pin.
- (2) (3) When TC pin reaches 2.7 V ($V_{TH2 (H)}$); the capacitor connected TC pin begin discharge, and the Reset pin outputs "Low". During the Reset outputs "High" for the first time; the time of charge will be $t_{WD} + t_{RT (I)}$, since TC pin begin charging its capacitor starting from 0 V.
- When TC pin drops to 0.2 V (V_{TH2 (L)}); the Reset will outputs "High" again. At same time, TC pin will begin charging again. Unless correct clock input is given to WD pin, the TC pin will repeats the charging from 0.2 V to 2.7 V, and the Reset will also repeats "High" during the t_{WD} cycle, and "Low" during t_{RT (2)} cycle.
- (5) (6) When correct clock input is given to WD pin before TC pin reaches 2.7 V, the Reset holds "High" output.
- (7) (8) When incorrect clock is given to WD pin, the TC pin will repeats the charging from 0.2 V to 2.7 V, and the Reset will also repeats "High" during the t_{WD} cycle, and "Low" during t_{RT (2)} cycle.
- (9) When V_{DD} drops down to 4.25 V (V_{TH1}), the Reset circuit will function, and it will output "Low" to Reset pin and TC pin changes to discharging state.

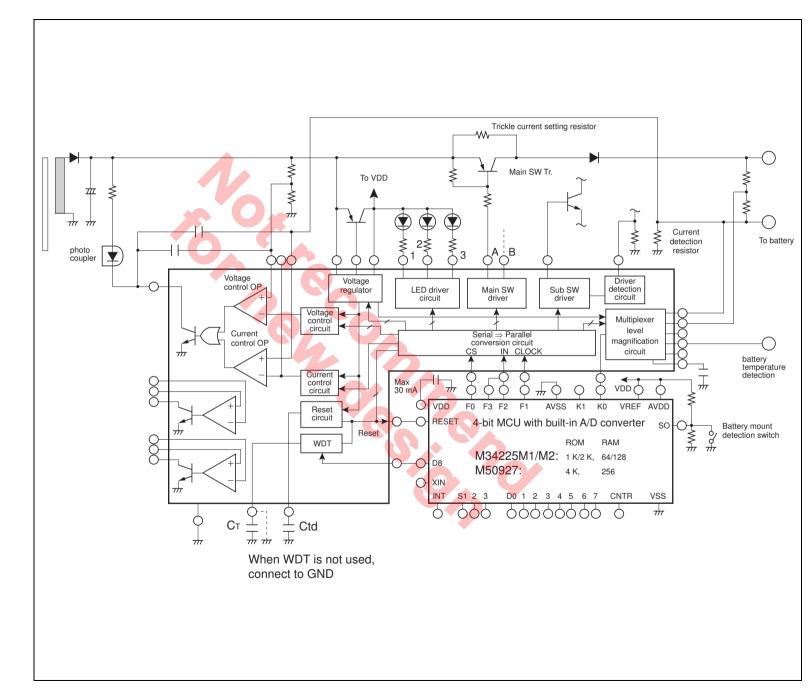


- (1) When V_{DD} reaches 4.75 V ($V_{TH1} + \Delta V_{TH1}$), the Reset outputs "High" after fixed amount of time (td).
- (2) When V_{DD} drops below 4.25 V (V_{TH1}), the Reset outputs "Low".
- (3) When V_{DD} reaches 4.75 V ($V_{TH1} + \Delta V_{TH1}$) again, the Reset outputs "High" after fixed amount of time (td). Also, Reset output will be "Low" until V_{DD} reaches 0.65 V (Typ).


M62254FP

Word Description:

- td: The time after V_{DD} reaching Reset release voltage to "High" Reset output.
- $t_{RT (1)}$: The time TC pin voltage changes from 0 V to $V_{TH2 (L)}$, when V_{DD} is given.
- $t_{WD} {:} \qquad \text{The time TC pin voltage changes from } V_{TH2\,(L)} \text{ to } V_{TH2\,(H)}.$
- $t_{RT\,(2)}\!\!: \quad \text{The time TC pin voltage changes from } V_{TH2\,(H)} \text{ to } V_{TH2(L)}.$
- 1. Regarding the pin 25 (Ctd pin) capacity and the delay time (td) The delay time (td) of Reset output can be found using following equation. $td = 2 \times 10^5 \times Ctd$ (s)
- Regarding charge and discharge of pin 27 (TC pin) When incorrect clock is given to the WD pin, the voltage level of TC pin will be changed as show below.



3. Regarding the input clock, input pulse width, charging time, and discharging time of pin 26 (WD pin) When correct clock is given to the WD pin, the voltage level of TC pin will be changed as show below.

Please, set the pulse width (t_{WDIN}) more than $t_{WDIN (MIN)}$.

Application Example of M62254FP

Package Dimensions

JETA Package Code RENESAS Code Previous Code MASSITyp.] P.SSOP36-8.4x15-0.80 PRSP0036GA.A 36P2R-A 0.5g Image: Code in the second in the
NOTE) 1. DIMENSIONS "1" AND "2" DONOT INCLUDE TRIM OFFSET. 2. DIMENSIONS "1" AND "2" DONOT INCLUDE TRIM OFFSET. 3. DIMENSION "3" DOES NOT INCLUDE TRIM OFFSET.
NOTE) 1. DIMENSIONS "1" AND "2" DONOT INCLUDE TRIM OFFSET. 2. DIMENSIONS "1" AND "2" DONOT INCLUDE TRIM OFFSET. 3. DIMENSION "3" DOES NOT INCLUDE TRIM OFFSET.
NOTE) 1. DIMENSIONS "1" AND "2" DONOT INCLUDE TRIM OFFSET. 2. DIMENSIONS "1" AND "2" DONOT INCLUDE TRIM OFFSET. 3. DIMENSION "3" DOES NOT INCLUDE TRIM OFFSET.
NOTE) 1. DIMENSIONS "1" AND "2" DONOT INCLUDE TRIM OFFSET. 2. DIMENSIONS "1" AND "2" DONOT INCLUDE TRIM OFFSET. 3. DIMENSION "3" DOES NOT INCLUDE TRIM OFFSET.
NOTE) 1 DIMENSIONS "1" AND "2" 1 DIMENSION "3" DOES NOT NCLUDE MAIL 2 DIMENSION "3" DOES NOT NCLUDE TRIM OFFSET. Therefore the provide state of the providest of t
$\frac{1}{2} \underbrace{D}$
$\frac{1}{2} \underbrace{D}$
$\frac{1}{2} \underbrace{D}$
$\frac{1}{2} \underbrace{D}$
Patersnee Symbol Min Nom I D 14.8 15.0 - E 8.2 8.4 A A A Batersnee Dimension in Millin D 14.8 15.0 - E 8.2 8.4 A A A D - D - D - D - D - D - D - D
Patersnee Symbol Min Nom I D 14.8 15.0 - E 8.2 8.4 A A A Batersnee Dimension in Millin D 14.8 15.0 - E 8.2 8.4 A A A D - D - D - D - D - D - D - D
Patersnee Symbol Min Nom I D 14.8 15.0 - E 8.2 8.4 A A A Batersnee Dimension in Millin D 14.8 15.0 - E 8.2 8.4 A A A D - D - D - D - D - D - D - D
$\begin{array}{c c} \hline \\ \hline $
$\begin{array}{c} \bullet \\ \bullet $
$\begin{array}{c c} \hline \\ \hline $
$\begin{array}{c c} \hline \\ \hline $
A1 0.05 -
$\begin{array}{c c} b_p & 0.35 & 0.4 \\ \hline c & 0.13 & 0.15 \\ \hline \end{array}$
θ θ θ θ θ θ θ
Detail F HE 11.63 11.93 1
e 0.65 0.8 0
<u>y</u> <u></u> <u>-</u> <u>-</u>
L 0.3 0.5

RenesasTechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Benesas lechnology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
 Pines
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warranties or representations with respect to the accuracy or completeness of the information in this document.
 This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for the intersect on the information in this document.
 The product date. diagrams, charts, programs, algorithms, and application circuit examples.
 An information included in this document is used. When exporting the products or the technology described herein, you should follow the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 An information included in this document, included in this document, but Renesas as more the applicable export control laws and regulations, and proceedures required by such laws and regulations.
 Renesas has used reasonable care in compiling the information included in this document, but Renesas as control and different information included in this document. Dut Renesas as products for the terps of the substalling of lips product so the terps of the substalling of lips product so the terps of the substalling of lips product so the terps of the substalling of lips product so the terps of the substalling of lips product so the terps of the process of the substalling of lips product so the substalling of lips product so the terps of the substalling of lips product so the terps of the substalling of lips product so the terps of the substalling of lips product so the terps of the substalling of lips product so the terps of the substalling of lips product so the terps of the substalling of lips products of the substallips of lips product specified by Re

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc. 450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K. Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd. Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7858/7898

Renesas Technology Hong Kong Ltd. 7th Floor, North Tower, World Finance Centre, Harbour City, Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2377-3473

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 3518-3399

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510