Freescale Semiconductor

Document Number: MPX2102

Rev 9, 01/2012

100 kPa On-Chip Temperature Compensated Silicon Pressure Sensors

The MPX2102 series devices are silicon piezoresistive pressure sensors providing a highly accurate and linear voltage output directly proportional to the applied pressure. The sensor is a single, monolithic silicon diaphragm with the strain gauge and a thin-film resistor network integrated on chip. The chip is laser trimmed for precise span and offset calibration and temperature compensation.

Features

- Temperature Compensated Over 0°C to +85°C
- · Easy-to-Use Chip Carrier Package Options
- · Available in Absolute, Differential and Gauge Configurations
- · Absolute, Differential and Gauge Options

MPX2102 Series

0 to 100 kPa (0 to 14.5 psi) 40 mV Full Scale (Typical)

Application Examples

- · Pump/Motor Control
- Robotics
- · Level Detectors
- · Medical Diagnostics
- · Pressure Switching
- Barometers
- Altimeters

	ORDERING INFORMATION								
Device Name	Package	Case		# of Ports			Pressure Type	е	Device Marking
	Options	No.	None	Single	Dual	Gauge	Differential	Absolute	Device Marking
Unibody Package	(MPX2102 Series)								
MPX2102A	Tray	344	•					•	MPX2102A
MPX2102AP	Tray	344B		•				•	MPX2102AP
MPX2102ASX	Tray	344F		•				•	MPX2102A
MPX2102DP	Tray	344C			•		•		MPX2102DP
MPX2102GP	Tray	344B		•		•			MPX2102GP
MPX2102GVP	Tray	344D		•		•			MPX2102GVP
Small Outline Pack	Small Outline Package (MPXV2102G Series)								
MPXV2102GP	Tray	1369		•		•			MPXV2102GP
MPAK Package (M	PXM2102 Series)			•		•			
MPXM2102A	Rail	1320	•					•	MPXM2102A
MPXM2102AT1	Tape and Reel	1320	•					•	MPXM2102A
MPXM2102AS	Rail	1320A		•				•	MPXM2102AS
MPXM2102AST1	Tape and Reel	1320A		•				•	MPXM2102AS
MPXM2102D	Rail	1320	•				•		MPXM2102D
MPXM2102DT1	Tape and Reel	1320	•				•		MPXM2102D
MPXM2102GS	Rail	1320A		•		•			MPXM2102GS
MPXM2102GST1	Tape and Reel	1320A		•		•			MPXM2102GS

UNIBODY PACKAGES

MPX2102A CASE 344

MPX2102AP/GP CASE 344B

MPX2102DP CASE 344C

MPX2102GVP CASE 344D

MPX2102ASX CASE 344F

SMALL OUTLINE PACKAGE

MPXV2102GP CASE 1369

MPAK

MPXM2102A/ATI MPXM2102D/DT1 CASE 1320

MPXM2102AS/AST1 MPXM2102GS/AS CASE 1320A

Operating Characteristics

Table 1. Operating Characteristics ($V_S = 10 V_{DC}$, $T_A = 25^{\circ}C$ unless otherwise noted, P1 > P2)

Symbol	Min	Тур	Max	Units
	20 0	_	100 100	kPa kPa
V _S	_	10	16	V_{DC}
I _O	_	6.0	_	mAdc
V _{FSS}	38.5	40	41.5	mV
V _{OFF}	-1.0 -2.0 -1.0 -2.0	_ _ _ _	1.0 2.0 1.0 2.0	mV mV
ΔV/ΔΡ	_	0.4	_	mV/kPa
_	-0.6 -1.0 -0.6 -1.0	_ _ _ _	0.4 1.0 0.4 1.0	%V _{FSS}
_	_	±0.1	_	%V _{FSS}
_	_	±0.5	_	%V _{FSS}
TCV _{FSS}	-2.0	_	2.0	%V _{FSS}
TCV _{OFF}	-1.0	_	1.0	mV
Z _{IN}	1000	_	2500	W
Z _{OUT}	1400	_	3000	W
t _R	_	1.0	_	ms
_	_	20	_	ms
_	_	±0.5	_	%V _{FSS}
	POP POP POP Vs Io VFSS VOFF VOFF TCVFSS TCVOFF ZIN ZOUT tR —	POP POP 20 0 VS — IO — VFSS 38.5 VOFF -1.0 -2.0 VOFF -1.0 -2.0 ΔV/ΔP — — -0.6 -1.0 -2.0 — -1.0 -0.6 -1.0 — -1.0 -1.0 — -1.0 — -1.0 — -1.0 TCV _{FSS} -2.0 TCV _{OFF} -1.0 Z _{IN} 1000 Z _{OUT} 1400 t _R — — —	POP POP 20 — VS — 10 IO — 6.0 VFSS 38.5 40 VOFF — — -2.0 — — VOFF — — -1.0 — — -2.0 — — -1.0 — — -1.0 — — -1.0 — — -1.0 — — -1.0 — ±0.5 TCV _{FSS} — — TCV _{OFF} — — TCV _{OFF} — — Z _{IN} 1000 — Z _{OUT} 1400 — TCV — — — -1.0 — — -1.0 — — -1.0 — — -1.0 — — -1.0 — — -1.0 — — -1.0 — — -1.0	POP POP 20 — 100 VS — 10 16 IO — 6.0 — VFSS 38.5 40 41.5 VOFF — 1.0 — 2.0 VOFF — 1.0 — 2.0 VOFF — 1.0 — 2.0 ΔV/ΔP — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 — — — 0.4 —

- 1. 1.0 kPa (kiloPascal) equals 0.145 psi.
- 2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.
- 3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum related pressure.
- 4. Offset (V_{OFF}) is defined as the output voltage at the minimum rated pressure.
- 5. Accuracy (error budget) consists of the following:

Linearity: Output deviation from a straight line relationship with pressure, using end point method, over the specified pressure range.

Temperature Hysteresis:Output deviation at any temperature within the operating temperature range, after the temperature is cycled to and from the minimum or maximum operating temperature points, with zero differential pressure applied.

Pressure Hysteresis: Output deviation at any pressure with the specified range, when this pressure is cycled to and from the minimum or maximum rated pressure at 25°C.

TcSpan: Output deviation at full rated pressure over the temperature range of 0 to 85°C, relative to 25°C.

TcOffset: Output deviation with minimum rated pressure applied, over the temperature range of 0 to 85°C, relative to 25°C.

- 6. Response Time is defined as the time from the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.
- 7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.

Maximum Ratings

Table 2. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (P1 > P2)	P _{MAX}	400	kPa
Storage Temperature	T _{STG}	-40 to +125	°C
Operating Temperature	T _A	-40 to +125	°C

^{1.} Exposure beyond the specified limits may cause permanent damage or degradation to the device.

Voltage Output vs. Applied Differential

The differential voltage output of the sensor is directly proportional to the differential pressure applied.

The absolute sensor has a built-in reference vacuum. The output voltage will decrease as vacuum, relative to ambient, is drawn on the pressure (P1) side.

The output voltage of the differential or gauge sensor increases with increasing pressure applied to the pressure

(P1) side relative to the vacuum (P2) side. Similarly, output voltage increases as increasing vacuum is applied to the vacuum (P2) side relative to the pressure (P1) side.

Figure 1 illustrates a block diagram of the internal circuitry on the stand-alone pressure sensor chip.

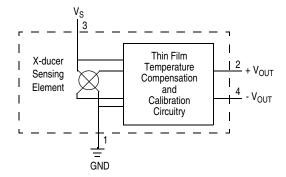


Figure 1. Temperature Compensated Pressure Sensor Schematic

On-Chip Temperature Compensation and Calibration

Figure 2 shows the output characteristics of the MPX2102 series at 25°C. The output is directly proportional to the differential pressure and is essentially a straight line.

The effects of temperature on Full Scale Span and Offset are very small and are shown under Operating Characteristics.

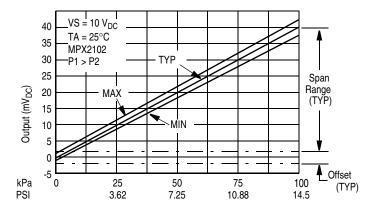


Figure 2. Output vs. Pressure Differential

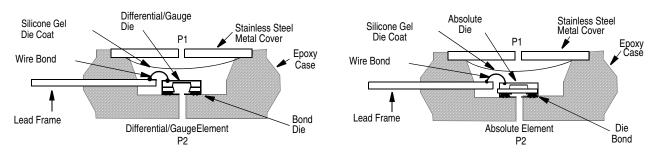


Figure 3. Cross Sectional Diagrams (Not to Scale)

Figure 3 illustrates the absolute sensing configuration (right) and the differential or gauge configuration in the basic chip carrier (Case 344). A silicone gel isolates the die surface and wire bonds from the environment, while allowing the pressure signal to be transmitted to the silicon diaphragm.

The MPX2102 series pressure sensor operating characteristics and internal reliability and qualification tests are based on use of dry air as the pressure media. Media other than dry air may have adverse effects on sensor performance and long term reliability. Contact the factory for information regarding media compatibility in your application.

LINEARITY

Linearity refers to how well a transducer's output follows the equation: $V_{OUT} = V_{OFF} + \text{sensitivity} \times P$ over the operating pressure range. There are two basic methods for calculating nonlinearity: (1) end point straight line fit (see Figure 4) or (2) a least squares best line fit. While a least squares fit gives the "best case" linearity error (lower numerical value), the calculations required are burdensome.

Conversely, an end point fit will give the "worst case" error (often more desirable in error budget calculations) and the calculations are more straightforward for the user.

Freescale's specified pressure sensor linearities are based on the end point straight line method measured at the midrange pressure.

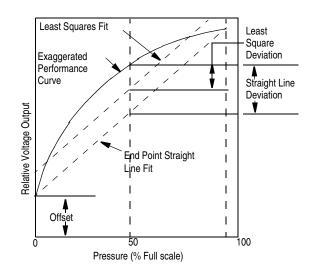
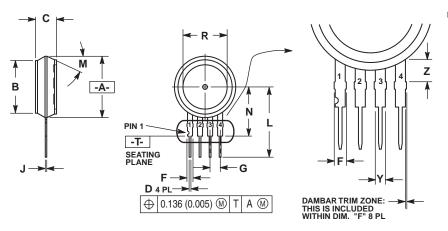


Figure 4. Linearity Specification Comparison


PRESSURE (P1)/VACUUM (P2) SIDE IDENTIFICATION TABLE

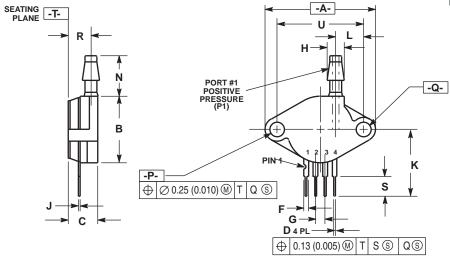
Freescale designates the two sides of the pressure sensor as the Pressure (P1) side and the Vacuum (P2) side. The Pressure (P1) side is the side containing the silicone gel which isolates the die. The differential or gauge sensor is designed to operate with positive differential pressure applied, P1 > P2. The absolute sensor is designed for vacuum applied to P1 side.

The Pressure (P1) side may be identified by using Table 3.

Table 3. Pressure (P1) Side Delineation

Part Number	Case Type	Pressure (P1) Side Identifier
MPX2102A	344	Stainless Steel Cap
MPX2102DP	344C	Side with Part Marking
MPX2102AP, MPX2102GP	344B	Side with Port Attached
MPX2102GVP	344D	Stainless Steel Cap
MPX2102ASX	344F	Side with Port Marking
MPXV2102GP	1369	Side with Port Attached
MPXM2102A, MPX2102ATI, MPXM2102D, MPXM2102DT1	1320	Stainless Steel Cap
MPXM2102AS, MPXM2102GS, MPXM2102ASTI, MPXM2102GSTI	1320A	Side with Port Attached

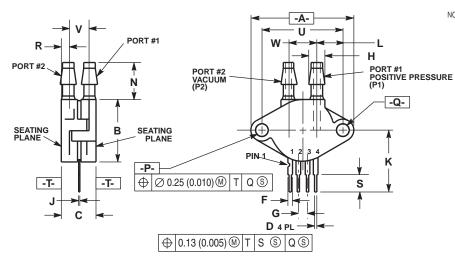
- ES:


 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.

 2. CONTROLLING DIMENSION: INCH.

 3. DIMENSION -A- IS INCLUSIVE OF THE MOLD STOP RING. MOLD STOP RING NOT TO EXCEED 16.00 (0.630).

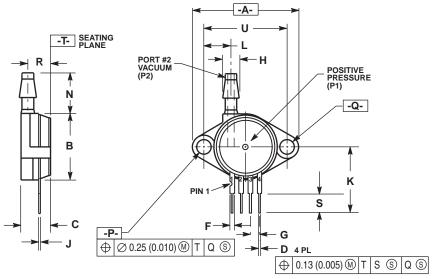
	INC	HES	MILLIM	ETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.595	0.630	15.11	16.00	
В	0.514	0.534	13.06	13.56	
С	0.200	0.220	5.08	5.59	
D	0.016	0.020	0.41	0.51	
F	0.048	0.064	1.22	1.63	
G	0.100	BSC	2.54 BSC		
J	0.014	0.016	0.36	0.40	
L	0.695	0.725	17.65	18.42	
М	30°	NOM	30° I	MOV	
N	0.475	0.495	12.07	12.57	
R	0.430	0.450	10.92	11.43	
Υ	0.048	0.052	1.22	1.32	
Z	0.106	0.118	2.68	3.00	


CASE 344-15 ISSUE AA UNIBODY PACKAGE

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.145	1.175	29.08	29.85	
В	0.685	0.715	17.40	18.16	
С	0.305	0.325	7.75	8.26	
D	0.016	0.020	0.41	0.51	
F	0.048	0.064	1.22	1.63	
G	0.100 BSC		2.54 BSC		
Н	0.182	0.194	4.62	4.93	
J	0.014	0.016	0.36	0.41	
K	0.695	0.725	17.65	18.42	
L	0.290	0.300	7.37	7.62	
N	0.420	0.440	10.67	11.18	
Р	0.153	0.159	3.89	4.04	
Q	0.153	0.159	3.89	4.04	
R	0.230	0.250	5.84	6.35	
S	0.220	0.240	5.59	6.10	
U	0.910	BSC	23.11	BSC	

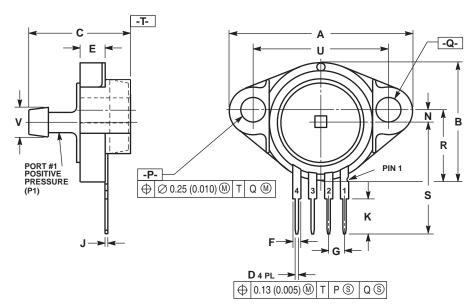
CASE 344B-01 ISSUE B UNIBODY PACKAGE



NOTES:

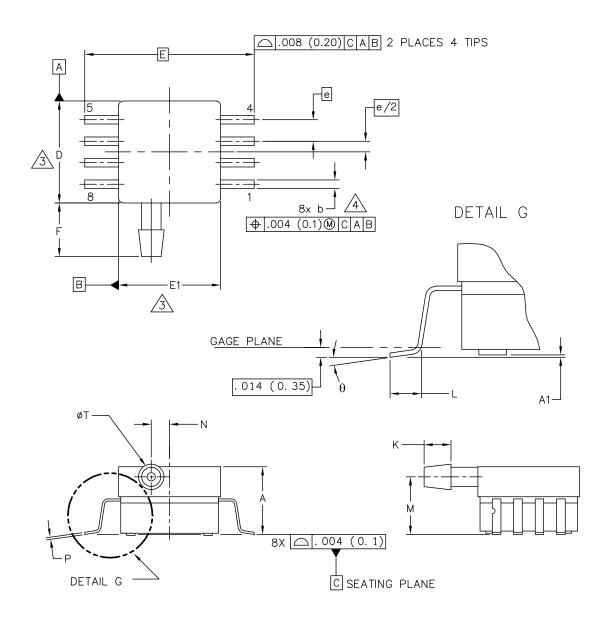
- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

	INC	IES	MILLIN	IETERS				
DIM	MIN	MAX	MIN	MAX				
Α	1.145	1.175	29.08	29.85				
В	0.685	0.715	17.40	18.16				
С	0.405	0.435	10.29	11.05				
D	0.016	0.020	0.41	0.51				
F	0.048	0.064	1.22	1.63				
G	0.100 BSC		2.54	BSC				
Н	0.182	0.194	4.62	4.93				
J	0.014	0.016	0.36	0.41				
K	0.695	0.725	17.65	18.42				
L	0.290	0.300	7.37	7.62				
N	0.420	0.440	10.67	11.18				
Р	0.153	0.159	3.89	4.04				
Q	0.153	0.159	3.89	4.04				
R	0.063	0.083	1.60	2.11				
S	0.220	0.240	5.59	6.10				
U	0.910	BSC	23.11 BSC					
٧	0.248	0.278	6.30	7.06				
W	0.310	0.330	7.87	8.38				


CASE 344C-01 ISSUE B UNIBODY PACKAGE

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.
 2. CONTROLLING DIMENSION: INCH.

	INC	HES	MILLIM	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	1.145	1.175	29.08	29.85	
В	0.685	0.715	17.40	18.16	
С	0.305	0.325	7.75	8.26	
D	0.016	0.020	0.41	0.51	
F	0.048	0.064	1.22	1.63	
G	0.100	BSC	2.54 BSC		
Н	0.182	0.194	4.62	4.93	
J	0.014	0.016	0.36	0.41	
K	0.695	0.725	17.65	18.42	
Г	0.290	0.300	7.37	7.62	
N	0.420	0.440	10.67	11.18	
Р	0.153	0.159	3.89	4.04	
Q	0.153	0.158	3.89	4.04	
R	0.230	0.250	5.84	6.35	
S	0.220	0.240	5.59	6.10	
U	0.910	BSC	23.11	BSC	


CASE 344D-01 ISSUE B UNIBODY PACKAGE

- 25:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION: INCH.

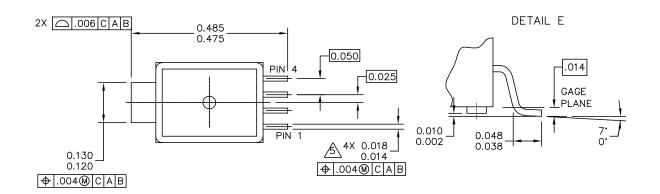
	INCHES MILLIMET			IETERS
DIM	MIN	MAX	MIN	MAX
Α	1.080	1.120	27.43	28.45
В	0.740	0.760	18.80	19.30
С	0.630	0.650	16.00	16.51
D	0.016	0.020	0.41	0.51
Ε	0.160	0.180	4.06	4.57
F	0.048	0.064	1.22	1.63
G	0.100 BSC		2.54 BSC	
J	0.014	0.016	0.36	0.41
K	0.220	0.240	5.59	6.10
N	0.070	0.080	1.78	2.03
Р	0.150	0.160	3.81	4.06
Q	0.150	0.160	3.81	4.06
R	0.440	0.460	11.18	11.68
S	0.695	0.725	17.65	18.42
U	0.840	0.860	21.34	21.84
٧	0.182	0.194	4.62	4.92

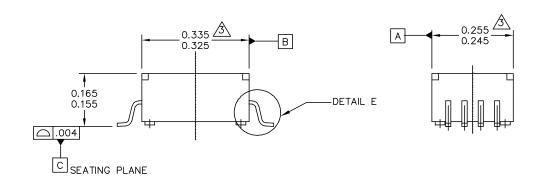
CASE 344F-01 ISSUE B UNIBODY PACKAGE

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	DOCUMENT	NO: 98ASA99303D	REV: B
8 LD SOP, SIDE PO	ORT CASE NUM	BER: 1369-01	24 MAY 2005
·	STANDARD	: NON-JEDEC	

CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE

NOTES:


- 1. CONTROLLING DIMENSION: INCH
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- △ DIMENSIONS DO NOT INCLUDE MOLD FLASH OR PPROTRUSIONS.


 MOLD FLASH AND PROTRUSIONS SHALL NOT EXCEED .006 (0.152) PER SIDE.
- △ DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 (0.203) MAXIMUM.

		CHES		LIMETERS		_	NCHES		LLIMETERS
DIM	MIN	MAX	MIN	MAX	DIM	MIN	MAX	MIN	MAX
A	. 300	. 330	7. 11	7. 62	θ	0.	7 °	0.	7°
A 1	. 002	. 010	0. 05	0. 25	_				
b	. 038	. 042	0. 96	1. 07	_				
D	. 465	. 485	11. 81	12. 32	_				
E	. 717	BSC	18	.21 BSC	_				
E1	. 465	. 485	11. 81	12. 32	_				
e	. 100) BSC	2.	54 BSC	-				
F	. 245	. 255	6. 22	6. 47	_				
K	. 120	. 130	3. 05	3. 30	-				
L	. 061	. 071	1. 55	1. 80	-				
М	. 270	. 290	6. 86	7. 36	_				
N	. 080	. 090	2. 03	2. 28	_				
Р	. 009	. 011	0. 23	0. 28	-				
Т	. 115	. 125	2. 92	3. 17	-				
	EDEECON E CE	MICONDUCTOR	INIO						
	© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICA					TLINE	PRINT VER	SION NO	OT TO SCALE
TITL	TITLE:					JMENT NO): 98ASA9930	3D	REV: B
8 LD SOP, SIDE PORT					CASE NUMBER: 1369-01 24 MAY 2005				
					STAI	NDARD: NO	N-JEDEC		

PAGE 2 OF 2

CASE 1369-01 ISSUE B SMALL OUTLINE PACKAGE

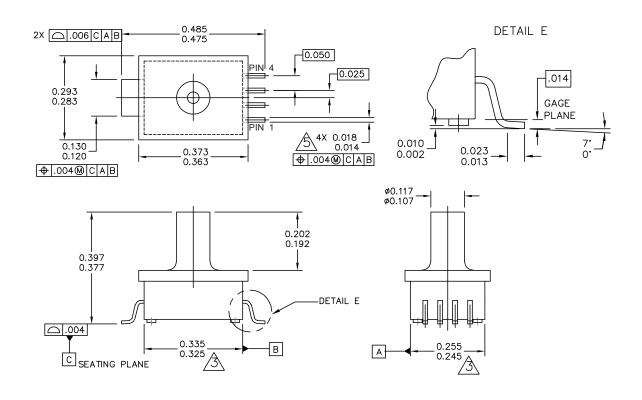
FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	L OUTLINE	PRINT VERSION NO	TO SCALE	
TITLE:		DOCUMENT NO]: 98ARH99088A	REV: B
5 LD M-PAC		CASE NUMBER	2: 1320-02	22 JUL 2005
		STANDARD: NO	IN-JEDEC	

CASE 1320-02 ISSUE B MPAK

NOTES:

- 1. DIMENSIONS ARE IN INCHES.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.

DIMENSION DOES NOT INCLUDE MOLD FLASH OR PROTRUSION. MOLD FLASH OR PROTRUSION SHALL NOT EXCEED .006" PER SIDE.


4. ALL VERTICAL SURFACES TO BE 5' MAXIMUM.

DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION.
ALLOWABLE DAMBAR PROTRUSION SHALL BE .008 MAXIMUM.

PIN 1: GND PIN 2: +Vout PIN 3: Vs PIN 4: -Vout

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED.	MECHANICAL	OUTLINE	PRINT VERSION NO	OT TO SCALE
TITLE:	D	OCUMENT NO): 98ARH99088A	REV: B
5 LD M-PAC		ASE NUMBER	R: 1320–02	22 JUL 2005
	S	TANDARD: NO	N-JEDEC	

CASE 1320-02 ISSUE B MPAK

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL		L OUTLINE	PRINT VERSION NOT TO SCALE	
5 LD M-PAC, PORTED		DOCUMENT NO): 98ARH99087A	REV: A
		CASE NUMBER	R: 1320A-02	22 JUL 2005
		STANDARD: NO	N-JEDEC	

CASE 1320A-02 ISSUE A MPAK

NOTES:

- 1. DIMENSIONS ARE IN INCHES.
- 2. INTERPRET DIMENSIONS AND TOLERANCES PER ASME Y14.5M-1994.
- $\stackrel{\textstyle \checkmark}{\cancel{\Delta}}$ dimensions does not include mold flash or protrusion. Mold flash or protrusion shall not exceed .006" per side.
- 4. ALL VERTICAL SURFACES TO BE 5" MAXIMUM.

© FREESCALE SEMICONDUCTOR, INC. ALL RIGHTS RESERVED. MECHANICAL OUTL		L OUTLINE	PRINT VERSION NOT TO SCALE	
5 LD M—PAC, PORTED		DOCUMENT NO): 98ARH99087A	REV: A
		CASE NUMBER	R: 1320A-02	22 JUL 2005
		STANDARD: NO	N-JEDEC	

CASE 1320A-02 ISSUE A MPAK

REVISION HISTORY

Revision number	Revision date	Description of changes
9	01/2012	 In Table 1. Operating Characteristics, in the Characteristic column under Pressure Range, added rows for Absolute Pressure Range MPX2102A and Differential Pressure Range MPX2102D devices

How to Reach Us:

Home Page:

www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off.

All other product or service names are the property of their respective owners. © 2012 Freescale Semiconductor, Inc. All rights reserved.

