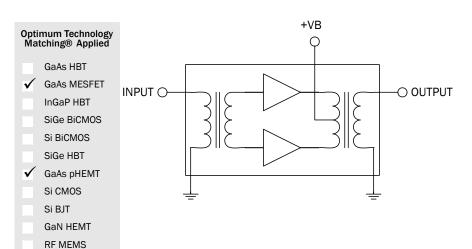


rfmd.com

S10040340


40 MHz to 1GHz GaAs PUSH PULL HYBRID

Package: SOT-115J

Product Description

The S10040340 is a Hybrid Push Pull amplifier module. The part employs GaAs die and is operated from 40 MHz to 1 GHz. It provides excellent linearity and superior return loss performance with low noise and optimal reliability.

Features

- Excellent Linearity
- Superior Return Loss Performance
- Extremely Low Distortion
- Optimal Reliability
- Extremely Low Noise
- Unconditionally Stable Under All Terminations
- 34.5dB Min. Gain at 1GHz
- 280mA Max. at 24VDC

Applications

■ 40 MHz to 1GHz CATV Amplifier Systems

Parameter	Specification			Unit	Condition	
Parameter	Min.	Min. Typ.		UIIIL	Condition	
Overall					$V_B = 24V; T_{MB} = 30 \degree C; Z_S = Z_L = 75 \Omega$	
Power Gain		34.0		dB	f=50MHz	
	34.5		36.5	dB	f=1000MHz	
Slope [1]	0.5	1.5	2.5	dB	f=40 MHz to 1000 MHz	
Flatness of Frequency Response			1.0	dB	f=40MHz to 1000MHz	
Input Return Loss	20.0			dB	f=40MHz to 160MHz	
	17.0			dB	f=160MHz to 870MHz	
	16.0			dB	f=870MHz to 1000MHz	
Output Return Loss	20.0			dB	f=40MHz to 160MHz	
	17.0			dB	f=160MHz to 870MHz	
	16.0			dB	f=870MHz to 1000MHz	
Noise Figure			4.5	dB	f=50MHz to 1000MHz	
Total Current Consumption (DC)		240.0	280.0	mA		
Distortion data 40MHz to						
750MHz						
СТВ		-66	-64	dBc	112 ch flat; V ₀ =44dBmV ^[2]	
XMOD		-60	-58	dBc	112 ch flat; V ₀ =44 dBmV ^[2]	
CS0		-65	-63	dBc	112 ch flat; V ₀ =44dBmV ^[2]	

^{1.} The slope is defined as the difference between the gain at the start frequency and the gain at the stop frequency.

2. 112 channels, NTSC frequency raster: 55.25 MHz to 745.25 MHz, +44 dBmV flat output level.

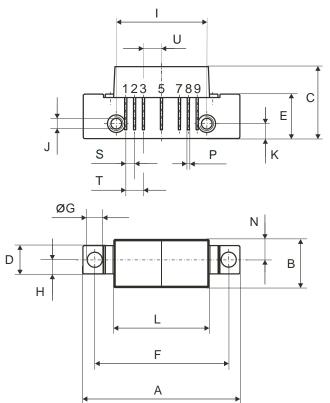
Composite Second Order (CSO) - The CSO parameter (both sum and difference products) is defined by the NCTA.

Composite Triple Beat (CTB) - The CTB parameter is defined by the NCTA.

Cross Modulation (XMOD) - Cross modulation (XMOD) is measured at baseband (selective voltmeter method), referenced to 100% modulation of the carrier being tested.

Absolute Maximum Ratings

Parameter	Rating	Unit
RF Input Voltage (single tone)	75	dBmV
DC Supply Over-Voltage (5 minutes)	30	V
Storage Temperature	-40 to +100	°C
Operating Mounting Base Temperature	-30 to +100	°C

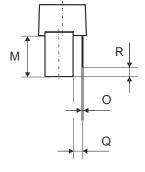


Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.



0 5 10mm

1	2	3	4	5	6	7	8	9
INPUT	GND	GND		+VB		GND	GND	OUTPUT

Notes:

All Dimensions in mm:

		ı	
	nominal	min	max
Α	44,6 ^{± 0,2}	44,4	44,8
В	13,6 ^{± 0,2}	13,4	13,8
С	20,4 ^{± 0,5}	19,9	20,9
D	8 ± 0,15	7,85	8,15
Е	12,6 ^{± 0,15}	12,45	12,75
F	38,1 ^{± 0,2}	37,9	38,3
G	4 +0,2 / -0,05	3,95	4,2
Н	4 ^{± 0,2}	3,8	4,2
I	25,4 ^{± 0,2}	25,2	25,6
J	UNC 6-32	-	-
K	4,2 ^{± 0,2}	4,0	4,4
L	27,2 ^{± 0,2}	27,0	27,4
М	11,6 ^{± 0,5}	11,1	12,1
N	5,8 ^{± 0,4}	5,4	6,2
0	0,25 ^{± 0,02}	0,23	0,27
Р	0,45 ^{± 0,03}	0,42	0,48
Q	2,54 ^{± 0,3}	2,24	2,84
R	2,54 ^{± 0,5}	2,04	3,04
S	2,54 ^{± 0,25}	2,29	2,79
Т	5,08 ^{± 0,25}	4,83	5,33
U	5,08 ^{± 0,25}	4,83	5,33