rfmd.com

RF6555

2.0V TO 3.6V, 2.4 GHz FRONT END MODULE

Package Style: Laminate 24-Pin 5mm x 5mm x 1mm



Features

- Tx Output Power = 18dBm
- Integrated RF Front End Module with Rx Balun, PA, Filter, LNA with Bypass Mode, and DP2T Switch
- Single Bidirectional Differential Transceiver Interface.
- Voltage Range = 2.0V to 3.6V

Applications

- ZigBee® 802.15.4 Based Systems for Remote Monitoring and Control
- AA Battery Operation
- 2.4GHz ISM Band **Applications**
- Smart Meters for Energy Management

Functional Block Diagram

Product Description

The RF6555 integrates a complete solution in a single Front End Module (FEM) for WiFi and ZigBee® applications in the 2.4GHz to 2.5GHz band. This FEM integrates the PA plus harmonic filter in the transmit path. The RF6555 also has an integrated LNA with bypass mode internally. The RF6555 provides a single balanced TDD access for Rx and Tx paths along with two ports on the output for connecting a diversity solution or a test port. The device is provided in a 5mm x 5mm x 1mm, 24pin laminate package.

Ordering Information

▼ InGaP HBT

RF6555 3.3V Front End Module for AMR systems in the 2.4 GHz to 2.5 GHz Band RF6555SQ Standard 25 piece bag **RF6555SR** Standard 100 piece reel RF6555TR13 Standard 2500 piece reel RF6555PCK-410 Fully assembled evaluation board and 5 loose pieces **Optimum Technology Matching® Applied ▼** GaAs pHEMT ☐ GaAs HBT ☐ SiGe BiCMOS ☐ GaN HEMT ☐ GaAs MESFET Si BiCMOS Si CMOS ☐ BiFET HBT

☐ Si BJT

						and UltimateBlue			

☐ SiGe HBT

☐ LDMOS

Absolute Maximum Ratings

Parameter	Rating	Unit
DC Supply Voltage	4.0	V
DC Supply Current	150	mA
Operating Case Temperature	-40 to +85	°C
Storage Temperature	-40 to +150	°C
ESD Human Body Model RF Pins	1000	V
ESD Human Body Model All Other Pins	500	V
ESD Charge Device Model All Pins	500	V
Moisture Sensitivity Level	MSL 2	
Maximum Tx Input Power	+5	dBm
Maximum Rx Input Power	+8	dBm

Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

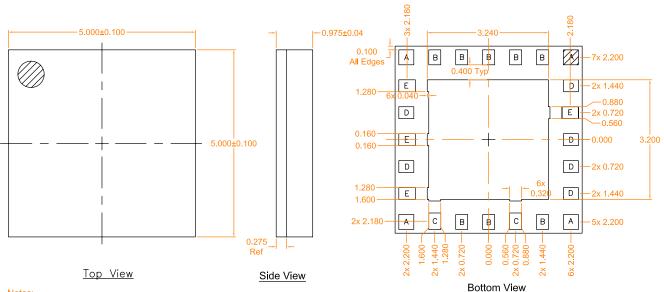
RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

Davamatav		Specificatio	n	11:4	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition		
Overall					Specifications must be met across supply voltage, control voltage, and temperature ranges unless otherwise specified.		
V _{BATT}	2.0	3.0	3.6	V _{DC}			
Operating Temperature Range	-40	+25	+85	°C			
Z _O		50		Ω			
Off Mode Current		0.5	1	μΑ	All logic low, Temp = 25 °C; Over Voltage.		
Storage Temperature	-40		+150	°C			
ESD, HBM	1000			V	RF pins		
ESD, HBM	500			V	All other pins		
ESD, CDM	500			V	All pins		
MSL	MSL3						
Current Sourced through CT Pin			18	mA			
Voltage Drop from CT Pin to RXP/RXN			0.1	V			
Tx Path							
Frequency	2405		2480	MHz			
Input Return Loss	10			dB	Pins 5, 6 (RFN, RFP) 100Ω differential		
Output Return Loss	10			dB			
Gain	22	25		dB	2.7V to 3.6V.		
	21			dB	V _{CC} = 2.0V; Temp = 25 °C		
Gain Flatness	-0.8		+0.8	dB			
Rated Output Power	18			dBm	Nominal conditions (V _B =3.0 to 3.6, All Temp)		
	16			dBm	Nominal conditions (V _B =2.7, All Temp)		
	14			dBm	Nominal conditions (V _B =2.0, All Temp)		
Supply Current		70	100	mA	P _O =18dBm 802.15.4 OQPSK		
Thermal Resistance		78		°C/W	V _{CC} = 3.0V, P _{OUT} = 18dBm, T _{REF} = 85°C		
Harmonics 2fo to 5fo		-45	-42	dBm/MHz	At 18dBm, V _{CC} = 3.0V to 3.6V		
VSWR Stability and Load	4:1						
VSWR No Damage	8:1						
Gain Settling Time		1	10	uS			

Dovemeter		Specification	n	Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition		
Rx Path							
Frequency	2405		2480	MHz			
Gain	8.5	11	13	dB			
Noise Figure		3		dB	Temp = 25°C; over voltage and frequency.		
Current		8	12	mA	Nominal conditions		
IIP3		7		dBm			
Gain Flatness	-0.5		+0.5	dB			
Input Return Loss	10	15		dB			
Output Return Loss	10			dB	Plns 5, 6 (RFN, RFP) 100Ω differential		
Amplitude Imbalance	-1		+1	dB			
Phase Imbalance	-15		+15	dB			
Maximum Input Power	5			dBm			
Bypass Mode							
Frequency	2405		2480	MHz			
Insertion Loss/Noise Figure		5	6.5	dB	SW 1dB, Bypass 2.5dB, Balun 1.5dB		
Current		50		uA			
IIP3		23		dBm			
Gain Flatness	-0.5		+0.5	dB			
Input Return Loss	10	12		dB			
Output Return Loss	10			dB	Pins 5, 6 (RFN, RFP) 100Ω differential		
Amplitude Imbalance	-1		+1	dB			
Phase Imbalance	-15		+15	dB			
Maximum Input Power	10			dBm			
Logic							
Logic Level "HIGH" Input Voltage	V _{BATT} -0.2		V _{BATT}	V			
Logic Level "LOW" Input Voltage	0.0		0.2	V			
Input Source Current at Logic "HIGH"		5	10	uA			
Switch Leakage Current at Logic "LOW"			1	uA			
Antenna Switch							
RF to Control Isolation		50		dB			
ANT1 to ANT2 Isolation		20		dB			
T/R Switching Time			1	μs			

Control Logic

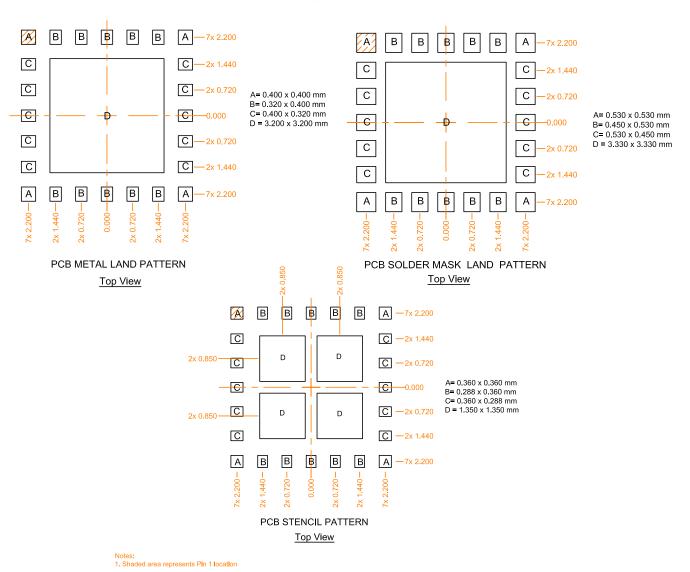
Mode	CE	C_RX_TX	C_LNA	ANTSEL
TX-ANT1	High	High	Low	Low
TX-ANT2	High	High	Low	High
RX-ANT1 LNA	High	Low	Low	Low
RX-ANT2 BYP	High	Low	High	Low
RX-ANT2 LNA	High	Low	Low	High
RX-ANT2 BYP	High	Low	High	High
Power Down	Low	Low	Low	Low



rfmd.com

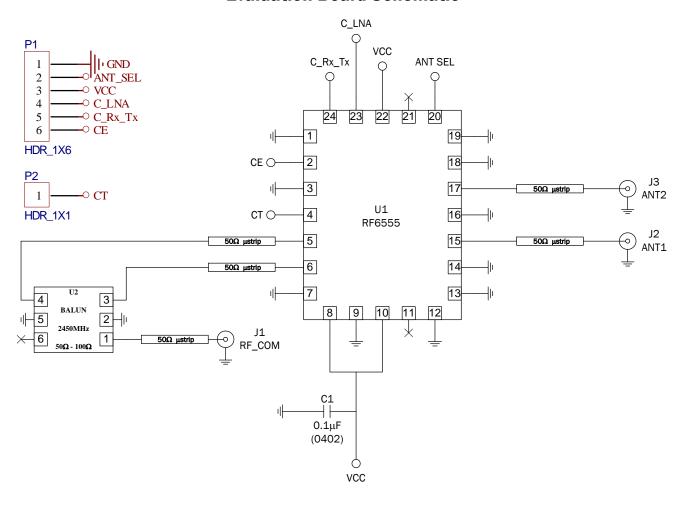
Pin	Function	Description
1	GND	Ground.
2	CE	Control voltage pin for chip enable. See logic table.
3	GND	Ground.
4	СТ	Center tap for passing DC voltage to RFN/RFP pins that connect to the TXVR SolC.
5	RFN	Differential bi-directional RF port. Matched to 50Ω single-ended, 100Ω differential.
6	RFP	Differential bi-directional RF port. Matched to 50Ω single-ended, 100Ω differential.
7	GND	Ground.
8	VCC_DIG	Voltage supply pin for digital logic circuitry.
9	GND	Ground.
10	VCC_PA	Voltage supply pin for Tx power amplifier.
11	N/C	Not connected.
12	GND	Ground.
13	GND	Ground.
14	GND	Ground.
15	ANT1	Antenna port 1. Match to 50Ω and DC blocked internally.
16	GND	Ground.
17	ANT2	Antenna port 2. Matched to 50Ω and DC blocked internally.
18	GND	Ground.
19	GND	Ground.
20	ANTSEL	Control pin for antenna selection. See logic table.
21	N/C	Not connected.
22	VCC_LNA	Voltage supply pin for Rx low noise amplifier.
23	C_LNA	Control voltage for pin for LNA/bypass modes. See logic table.
24	C_RX_TX	Control voltage pin for Tx/Rx modes. See logic table.

Package Drawing

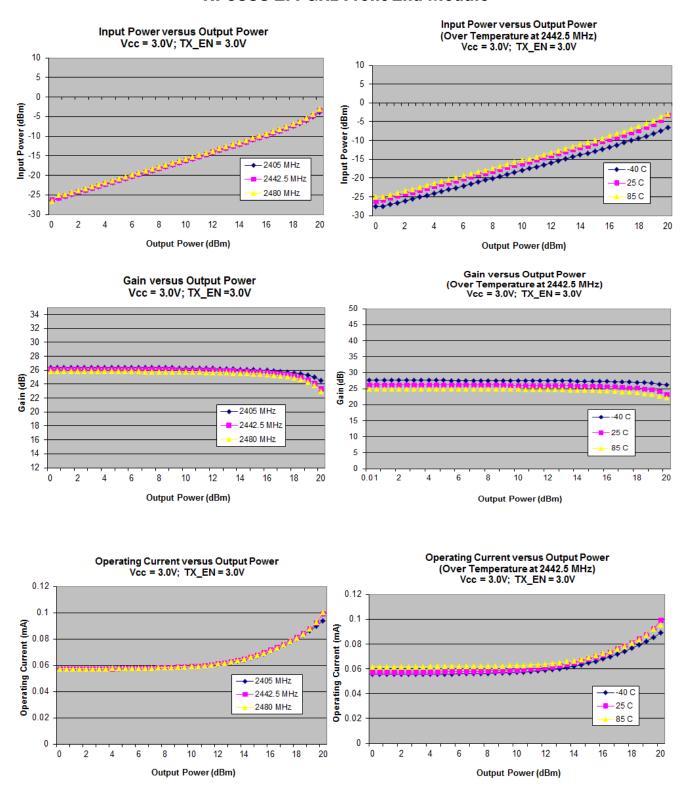


Notes:

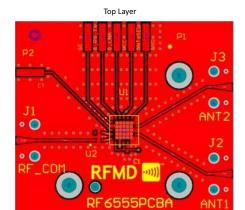
^{1.} Shaded area represents Pin 1 location

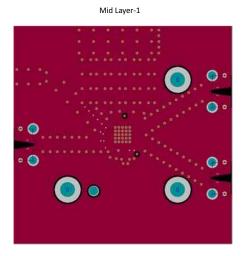

PCB Design Requirements

Thermal vias for center slug "D" should be incorporated into the PCB design. The number and size of thermal vias will depend on the application, power dissipation and electrical requirements. Example of the number and size of vias can be found on the RFMD evaluation board layout (gerber files are available upon request).

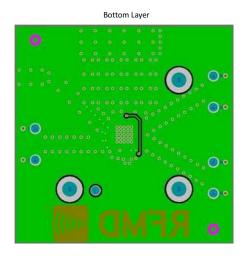


Evaluation Board Schematic


RF6555 2.4 GHz Front End Module



RF6555 Evaluation Board Layout Board Size 1.5" x 1.5"


Board Thickness 0.032" +/-10% Board Material FR-4; Multi-Layer

6555-410(A) EVAL BOARD

Mid Layer-2

