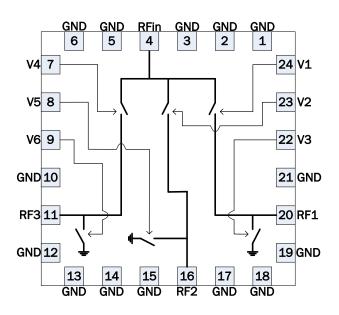


rfmd.com

RFSW2042

DC TO 15GHz SP3T PHEMT GaAs SWITCH

Package: QFN, 16-pin, 0.8mm x 4mm x 4mm



Features

- Low Insertion Loss: 2.1dB at 15GHz
- High Isolation: 37dB at 15GHz
- Excellent Return Loss
- 21nS Switching Speed
- GaAs pHEMT Technology
- Compact 4x4mm QFN package

Applications

- Broadband Communications
- Test Instrumentation
- Fiber Optics
- Military
- Aerospace

Functional Block Diagram

Product Description

RFMD's RFSW2042 is a broadband reflective SP3T GaAs microwave monolithic integrated circuit (MMIC) switch designed to operate from DC to 15GHz using the RFMD FD05 $0.5\mu m$ switch process. It features low insertion loss of 2.1dB at 15GHz and high isolation of 37dB at 15GHz while being packaged in a compact, low cost, 4mm x 4mm QFN package for easy end use assembly. The switch uses complementary control logic of -5/OV and does not require a separate bias supply.

Ordering Information

RFSW2042S2 2-piece sample bag
RFSW2042SB 5-piece bag
RFSW2042SQ 25-piece bag
RFSW2042SR 100 piece on 7" reel
RFSW2042TR7 750 piece on 7" reel

RFSW2042PCK-410 Evaluation Board with a 2-piece sample bag

Optimum Technology Matching® Applied

☐ GaAs HBT	☐ SiGe BiCMOS	✓ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	☐ BiFET HBT
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	☐ LDMOS

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity™, PowerStar®, POLARIS™ TOTAL RADIO™ and UttimateBlue™ are trademarks of RFMD, LLC. BLUETOOTH is a trade mark owned by Bluetooth SiG, Inc., U.S.A. and licensed for use by RFMD. All other trade names, trademarks and registered trademarks are the property of their respective owners. ©2006, RF Micro Devices, Inc.

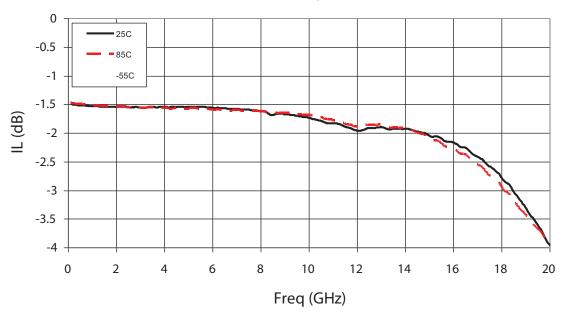
Absolute Maximum Ratings

Parameter	Rating	Unit
Drain Bias Voltage (V _{CTRL})	-10	V _{DC}
RF Input Power	+30	dBm
Storage Temperature	-55 to +150	°C
Operating Temperature	-55 to +85	°C
ESD JESD22-A114 Human Body Model (HBM)	Class 1A (All pads)	

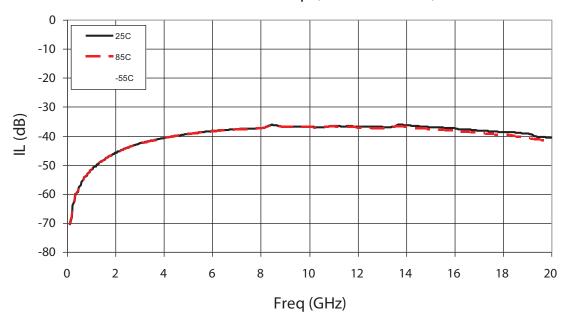
Caution! ESD sensitive device.

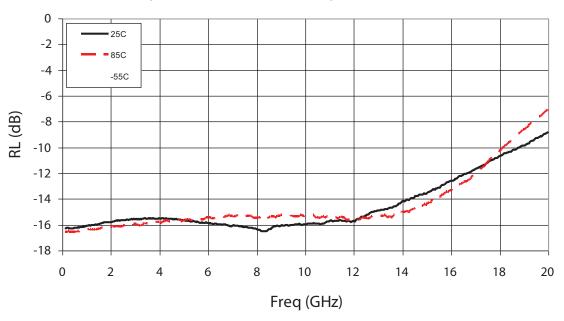
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

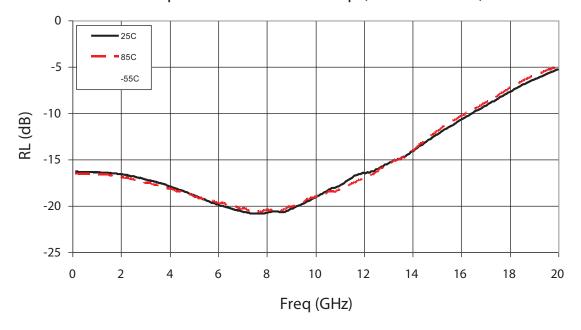


RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in

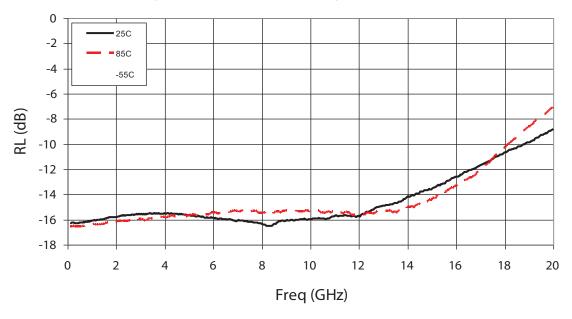

Parameter	Specification		Unit	Condition		
Faiailletei	Min.	Тур.	Max.	Unit	Condition	
Operating Frequency	DC		15	GHz		
Insertion Loss (0 GHz to 5 GHz)		1.6	2	dB	ON State, All Temps	
Insertion Loss (5 GHz to 10 GHz)		1.7	2.6	dB		
Insertion Loss (10 GHz to 15 GHz)		2.1	2.7	dB		
Isolation (DC to 15 GHz)	32	37		dB		
Input Return Loss (DC to 15 GHz)	10	15		dB		
Output Return Loss (DC to 15 GHz)	9	15		dB		
OIP3 (.5 GHz to 15 GHz)	32	36		dBm	100MHz spacing, 2dBm input, 25 °C	
OIP2 (.5 GHz to 15 GHz)	53	63		dBm		
Switching Speed		21	25	ns	50% control to 90% RF, All Temps	
Control Current		50	105	μA	Sum of all control lines, 25 °C	
Control Voltage		0/-5		V		



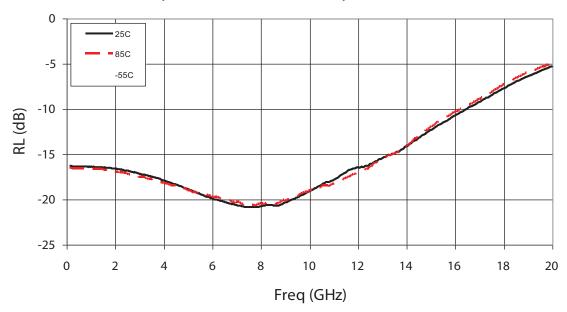
Isolation vs Temp (Vcontrol = -5v)



Input Return Loss vs Temp (Vcontrol = -5v)

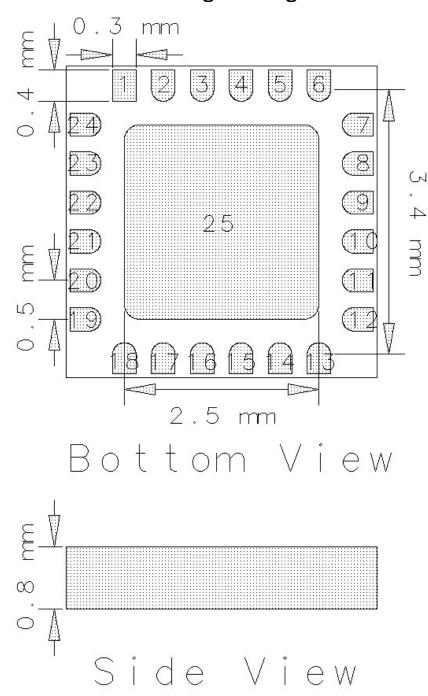


Output Return Loss vs Temp (Vcontrol = -5v)



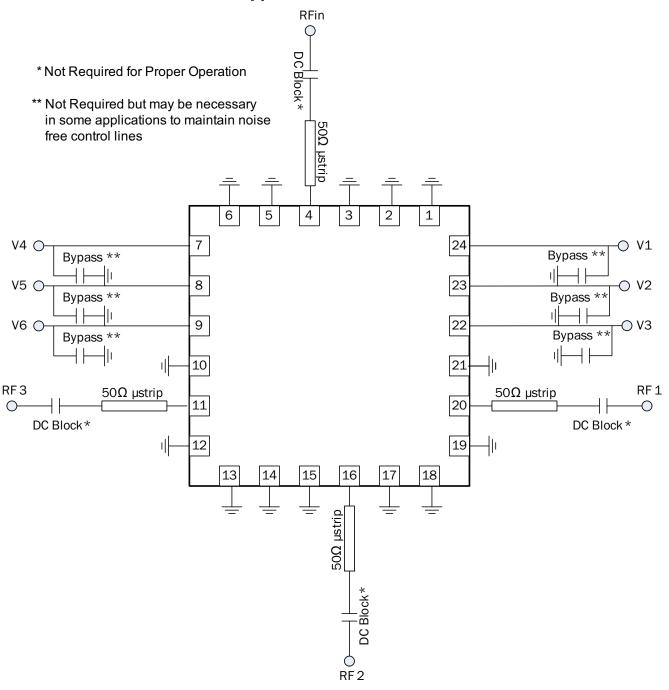
Output Return Loss vs Temp (Vcontrol = -5v)

Pin	Function	Description	Interface Schematic
7, 8, 9, 22, 23, 24	V4, V5, V6, V3, V2, V1	DC control for switch operation. Nominal operating voltage is -5V.	RFout
1, 2, 3, 5, 6, 10, 12, 13, 14, 15, 17, 18, 19, 21	GND	Ground. Grounding via should be located as close as possible to this pin.	
11, 16, 20	RF3, RF2, RF1	RF output. These pins are DC coupled and matched to 50Ω from DC to $15\text{GHz}.$	2kohm 2.2pF
4		RF input. This pin is DC coupled and matched to 50Ω from DC to 15GHz.	RFin •

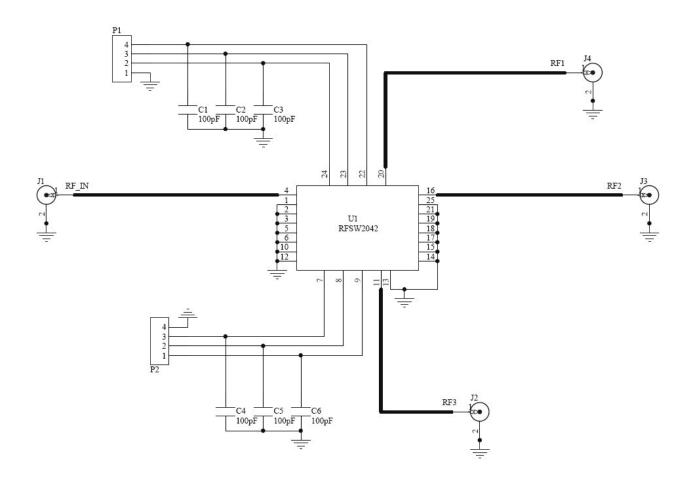

Truth Table

High = $-5V \pm 0.2V$, Low = 0V, $\pm 0.2V$

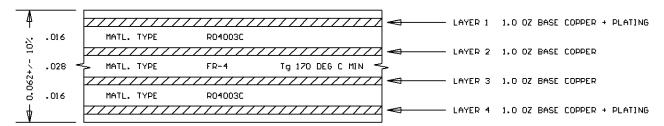
Control Line				RF Path		
V1	V2	V3	V4	V5	V6	
Low	High	High	High	Low	Low	RFin to RF1
High	Low	Low	High	High	Low	RFin to RF2
High	High	Low	Low	Low	High	RFin to RF3
High	High	Low	High	Low	Low	RFOFF (high isolation)

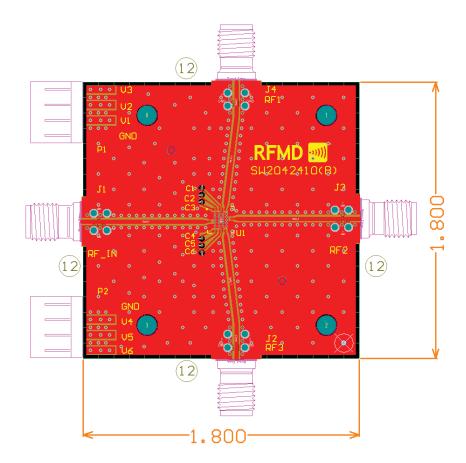

Package Drawing

Maximum Height = 1.0mm Dimensional Tolerance = +0.05mm



Application Schematic




Evaluation Board Schematic

Evaluation Board Layout

