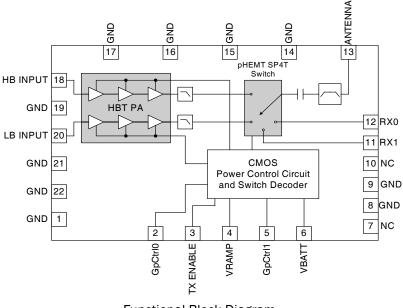


RF4180 DUAL-BAND GSM900/DCS1800 TRANSMIT MODULE


RoHS Compliant and Pb-Free Product Package Style: Module 6mmx8mm

Features

- Enhanced Performance Transmit Module
- Small Form Factor 6mmx8mmx1.2mm
- No External Routing
- High Efficiency @ rated P_{OUT} V_{BATT}=3.5V GSM900 43% DCS1800 35%
- Low RX Insertion Loss
- Symmetrical RX Ports
- OdBm to 6dBm Drive Level, >50dB of Dynamic Range
- Excellent ESD Protection at Antenna Port: 8kV
- Integrated Power Flattening Circuit

Applications

- 3V Dual-Band GSM/GPRS Handsets
- GSM900/DCS1800 Products
- GPRS Class 12 Compatible
- Portable Battery-Powered Equipment

Functional Block Diagram

Product Description

The RF4180 is a dual band (GSM900/DCS1800) transmit module with two symmetrical receive ports and GSM/GPRS Class 12 compliant. This transmit module builds upon RFMD's leading power amplifier with PowerStar® integrated power control technology, pHEMT switch technology and integrated transmit filtering for best-in-class harmonics. This results in high performance, a reduced solution size, and the ease of implementation simplifies transmitter design. The device is designed for use as the final portion of the transmit in GSM900/DCS1800 and eliminates the need for PA to antenna switch module matching. The device provides 50Ω matched input and output ports with no matching required.

The RF4180 features RFMD's latest integrated power flattening circuit, which significantly reduces current and power variation into load mismatch. The RF4180 also integrates an ESD filter to provide excellent ESD protection at the antenna port. The RF4180 is designed to provide high efficiency at rated P_{OUT} .

RF4180Dual-Band GSM900/DCS1800 Transmit ModuleRF4180SBTransmit Module 5-Piece Sample PackRF4180PCBA-41XFully Assembled Evaluation Board

Optimum Technology Matching® Applied ✓ GaAs HBT SiGe BiCMOS GaAs pHEMT GaAs MESFET Si BiCMOS Si CMOS RE MEMS

Si BJT

RF MICRO DEVICES®, RRMD®, Optimum Technology Matching®, Enabling Wireless Connectivity¹⁰, PowerStarte, PowerStarte, Poularis Variane and UtilimateBlue¹⁰ are trademarks of RFMD, LLC. BLUETOOTH is a trade mark noved by Builandha Sili, Circu, LLS A and Utilisened for use for EMDL, All other trade names and redistered trademarks and redistered trademarks and redistered trademarks and redistered trademarks. Sci 2006, BFM Utilized Devices Lice and Sili and Si

SiGe HBT

InGaP HBT

7628 Thorndike Road, Greensboro, NC 27409-9421. For sales or technical support, contact RFMD at (+1) 336-678-5570 or sales-support@rfmd.com.

Absolute Maximum Ratings

5						
Parameter	Rating	Unit				
Supply Voltage	-0.3 to +6.0	V				
Power Control Voltage (V _{RAMP})	-0.3 to +1.8	V				
Input RF Power	+10	dBm				
Max Duty Cycle	50	%				
Output Load VSWR	20:1					
Operating Temperature	-30 to +85	°C				
Storage Temperature	-55 to +150	°C				

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Devenator	Specification			11	Condition	
Parameter	Min. Typ. Ma		Max.	Unit	Condition	
Recommended Operating Conditions						
Overall Power Control V _{RAMP}						
Power Control "ON"			1.8	V	Max. P _{OUT}	
Power Control "OFF"		0.25		V	Min. POUT	
V _{RAMP} Input Capacitance		15	20	pF	DC to 2MHz	
V _{RAMP} Input Current			10	μΑ	V _{RAMP} =V _{RAMP MAX}	
Turn On/Off Time			2	us	V _{RAMP} =0V to V _{RAMP MAX}	
Power Control Range		50		dB	V _{RAMP} =0V to V _{RAMP MAX}	
Overall Power Supply						
Power Supply Voltage	3.0	3.5	4.8	V	Nominal Operating Limits	
Power Supply Current		1	20	μA	P _{IN} <-30dBm, TX Enable=Low, V _{RAMP} =0V, Temp=-20°C to +85°C, V _{BATT} =4.8V	
Overall Control Signals						
GpCtrl0, GpCtrl1 "Low"	0	0	0.5	V		
GpCtrl0, GpCtrl1 "High"	1.25	2.0	3.0	V		
GpCtrl0, GpCtrl1 "High Current"		1	2	uA		
TX Enable "Low"	0	0	0.5	V		
TX Enable "High"	1.25	2.0	3.0	V		
TX Enable "High Current"		1	2	uA		

Module Control and Antenna Switch Logic

TX ENABLE	GpCtrl1	GpCtrl0	TX Module Mode
0	0	0	Low Power Mode (Stand-by)
0	1	0	RX 0
0	1	1	RX 1
1	1	0	TX High Power Mode LB (GSM900)
1	1	1	TX High Power Mode HB (DCS1800)

rfmd.com

RF4180

Paramatar		Specification		Unit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition		
GSM900 Band					Nominal test conditions unless otherwise stated. All unused ports are terminated. V_{BATT} =3.5V, P_{IN} =3dBm, Temp=+25°C, TX Enable=High, V_{RAMP} = V_{RAMP_RP} , TX Mode: GpCtrl1=High, GpCtrl0=Low, Duty Cycle=25%, Pulse Width=1154 µs		
Operating Frequency Range	880		915	MHz			
Input Power	0	3	6	dBm			
Input VSWR			3:1		Over P _{OUT} range (5dBm to 33dBm)		
Maximum Output Power	33	33.6		dBm	Full P _{OUT} guaranteed at minimum drive level. Duty Cycle=25%, Pulse Width=1154 $\mu s,$ V _{RAMP} \leq 1.8V		
	32.5			dBm	Duty Cycle=50%, Pulse Width=2308 $\mu s, V_{RAMP}{\leq}1.8V$		
	31			dBm	V_{BATT} =3.0V to 4.8V, P_{IN} =0dBm to 6dBm, Temp=-20°C to +85°C, Duty Cycle=50%, Pulse Width=2308 µs, V_{RAMP} ≤1.8V		
Power Added Efficiency (PAE)	38	43		%	Set V _{RAMP} =V _{RAMP_RP} for P _{OUT} =33dBm		
Harmonics up to 12.75GHz			-33	dBm	V _{RAMP} =V _{RAMP_RP} for P _{OUT} =33dBm, also over all power levels (5dBm to 33dBm)		
Non-Harmonic Spurious up to 12.75GHz			-36	dBm	V _{RAMP} =V _{RAMP_RP} for P _{OUT} =33dBm, also over all power levels (5dBm to 33dBm)		
Forward Isolation 1		-56	-41	dBm	TX Enable=Low, P _{IN} =6dBm, V _{RAMP} =0.25V		
Forward Isolation 2		-25	-17	dBm	TX Enable=High, P _{IN} =6dBm, V _{RAMP} =0.25V		
Output Noise Power							
925MHz to 935MHz		-80	-74	dBm	$V_{RAMP} = V_{RAMP_{RP}}$ for $P_{OUT} = 33 dBm$,		
935MHz to 960MHz		-85	-83	dBm	RBW=100kHz		
Output Load VSWR Stability (Spuri- ous Emissions)			-36	dBm	$\label{eq:VSWR} VSWR = 12:1; all phase angles $$ (Set V_{RAMP} = V_{RAMP_{RP}} \mbox{ for } P_{OUT} \le 33 \mbox{ dBm into } $$ 50 \Omega$ load; load switched to VSWR = 12:1), $$ V_{BATT} = 3.0V$ to $$ 4.8V$, $$ P_{IN} = 0 \mbox{ dBm to } 6 \mbox{ dBm}, $$ Temp = -10 \ ^{\circ}C$ to $$ +85 \ ^{\circ}C$ $$ $$ C $$ Temp = -10 \ ^{\circ}C$ to $$ +85 \ ^{\circ}C$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$		
Output Load VSWR Ruggedness		damage or perma egradation to devi			$\label{eq:VSWR} \begin{array}{l} VSWR = 20:1; \mbox{ all phase angles} \\ (Set \ensuremath{V_{RAMP}} = \ensuremath{V_{RAMP}} = \ensuremath{P_{RAMP}} proves of the theory of the theo$		
Input and Output Impedance		50		Ω			

Note: $V_{RAMP_{RP}} = V_{RAMP}$ set for 33dBm at nominal conditions.

rfmd.com

	Specification			Unit	Condition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
DCS1800 Band					Nominal test conditions unless otherwise stated. All unused ports are terminated. $V_{BATT}=3.5V$, $P_{IN}=3dBm$, $Temp=+25$ °C, TX Enable=High, $V_{RAMP}=V_{RAMP_RP}$, TX Mode: GpCtrl1=High, GpCtrl0=High, Duty Cycle=25%, Pulse Width=1154 µs	
Operating Frequency Range	1710		1785	MHz		
Input Power	0	3	6	dBm		
Input VSWR			2.5:1		Over P _{OUT} range (0dBm to 30dBm)	
Maximum Output Power	30.0	31.5		dBm	Full P _{OUT} guaranteed at minimum drive level. Duty Cycle=25%, Pulse Width=1154 μ s, V _{RAMP} \leq 1.8 V	
	29.5			dBm	Duty Cycle=50%, Pulse Width=2308 $\mu s, V_{RAMP} \le 1.8 V$	
	28			dBm	$\label{eq:VBATT} \begin{array}{l} V_{BATT} = 3.0V \mbox{ to } 4.8V, \mbox{ P_{IN}} = 0 \mbox{ dBm to } 6 \mbox{ dBm}, \\ Temp = -20 \ ^{\circ}\mbox{ C to } +85 \ ^{\circ}\mbox{ C, Duty Cycle} = 50\%, \\ \mbox{ Pulse Width} = 2308 \mbox{ \mus, V_{RAMP}} \le 1.8V \end{array}$	
Power Added Efficiency (PAE)	30	35		%	Set V _{RAMP} =V _{RAMP_RP} for P _{OUT} =30dBm	
Harmonics up to 12.75GHz			-33	dBm	V _{RAMP} =V _{RAMP_RP} for P _{OUT} =30dBm, also over all power levels (0dBm to 30dBm)	
Non-Harmonic Spurious up to 12.75GHz			-36	dBm	V _{RAMP} =V _{RAMP_RP} for P _{OUT} =30dBm, also over all power levels (0dBm to 30dBm)	
Forward Isolation 1		-60	-53	dBm	TX Enable=Low, P _{IN} =6dBm, V _{RAMP} =0.25V	
Forward Isolation 2		-18	-10	dBm	TX Enable=High, P _{IN} =6dBm, V _{RAMP} =0.25V	
Output Noise Power						
1805 MHz to 1880 MHz		-87	-79	dBm	V _{RAMP} =V _{RAMP_RP} for P _{OUT} =30dBm, RBW=100kHz	
Output Load VSWR Stability (Spuri- ous Emissions)			-36	dBm	$\label{eq:stars} \begin{array}{l} \text{VSWR=12:1; all phase angles} \\ (\text{Set } \text{V}_{\text{RAMP}} = \text{V}_{\text{RAMP}_\text{RP}} \text{ for } \text{P}_{\text{OUT}} \leq 30 \text{dBm} \text{ into} \\ 50 \Omega \text{ load; load switched to } \text{VSWR=12:1}, \\ \text{V}_{\text{BATT}} = 3.0 \text{V to } 4.8 \text{V}, \text{P}_{\text{IN}} = 0 \text{dBm} \text{ to } 6 \text{dBm}, \\ \text{Temp=-10 °C to } +85 ^{\circ} \text{C} \end{array}$	
Output Load VSWR Ruggedness		damage or perma legradation to devi			$\label{eq:starses} \begin{array}{l} \text{VSWR=20:1; all phase angles} \\ (\text{Set } \text{V}_{\text{RAMP}} = \text{V}_{\text{RAMP}_{\text{R}P}} \text{ for } \text{P}_{\text{OUT}} = 30 \text{ dBm into} \\ 50 \Omega \text{ load; load switched to } \text{VSWR=20:1} \text{)}, \\ \text{V}_{\text{BATT}} = 3.0 \text{V to } 4.8 \text{V}, \text{P}_{\text{IN}} = 0 \text{ dBm to } 6 \text{ dBm}, \\ \text{Temp} = -30 ^\circ \text{C to } +85 ^\circ \text{C} \end{array}$	
Input and Output Impedance		50		Ω		

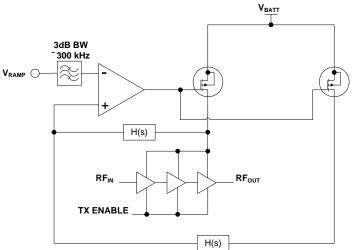
Note: $V_{RAMP_{RP}} = V_{RAMP}$ set for 30dBm at nominal conditions.

Parameter	Specification		Unit	Condition	
Farameter	Min.	Тур.	Max.	Unit	Condition
RX Section					Nominal test conditions unless otherwise stated. V _{BATT} =3.5V, P _{IN} =3dBm, Temp=+25°C, TX Enable=Low, V _{RAMP} =1.8V, RX0 mode: GpCtrl1=High, GpCtrl0=Low, RX1 mode: GpCtrl1=High, GpCtrl0=High, RX0 Freq=925MHz to 960MHz, RX1 Freq=1805MHz to 1880MHz
Insertion Loss GSM900 ANT-RX0/ RX1		1.0	1.2	dB	Freq=925 MHz to 960 MHz
In-Band Ripple GSM900 ANT-RX0/RX1			0.2	dB	Freq=925MHz to 960MHz
Input VSWR GSM900 ANT, RX0/RX1			2:1		Freq=925MHz to 960MHz
Insertion Loss DCS1800 ANT-RX0/RX1		1.1	1.3	dB	Freq=1805 MHz to 1880 MHz
In-Band Ripple DCS1800 ANT-RX0/RX1			0.2	dB	Freq=1805 MHz to 1880 MHz
Input VSWR DCS1800 ANT, RX0/RX1			2:1		Freq=1805 MHz to 1880 MHz
TX Section					
Switch Leakage P _{OUT} at RX Port GSM900 ANT-RX0/RX1			13	dBm	GSM900 TX mode: Freq=880 MHz to 915 MHz, GpCtrl1=High, GpCtrl0=Low, V _{RAMP} =V _{RAMP_RP} for P _{OUT} =33dBm at antenna port
Switch Leakage P _{OUT} at RX Port DCS1800 ANT-RX0/RX1			11	dBm	DCS1800 TX mode: Freq=1710 MHz to 1785 MHz, GpCtrl1=High, GpCtrl0=High, V _{RAMP} =V _{RAMP_RP} for P _{OUT} =30dBm at antenna port

Note: Isolation specification set to ensure at least 20dB of isolation. Calculation Example: Isolation=P_{OUT} @ Antenna-P_{OUT} @ RX Port. Isolation HB=30-10=20dB. Isolation LB=33-10=23dB.

RFMD	•))))
rfmd.com	

Pin	Function	Description
1	GND	
2	GPCTRLO	Control pin that together with GpCtrl1 controls the T/R switch and the CMOS controller provides the logic decod- ing.
3	TX ENABLE	This signal enables the PA module biases for operation with a logic high. The switch is put in TX mode deter- mined by GpCtrlO and GpCtrl1.
4	VRAMP	Analog signal used to control the output power. This signal also ramps the output power up and down.
5	GPCTRL1	Control pin that together with GpCtrIO controls the T/R switch and the CMOS controller provides the logic decod- ing.
6	VBATT	Power supply for the module. This should be connected to the battery terminal using as wide a trace as possible.
7	NC	
8	GND	
9	GND	
10	NC	
11	RX1	RX1 port of antenna switch. This is a 50Ω output. Interchangeable between the low and high frequency bands (GSM900 and GSM1800).
12	RX0	RX0 port of antenna switch. This is a 50Ω output. Interchangeable between the low and high frequency bands (GSM900 and GSM1800).
13	ANT	Antenna port of the switch. This is a 50 $\!\Omega$ output. Provides DC blocking as well as ESD protection.
14	GND	
15	GND	
16	GND	
17	GND	
18	HB RF IN	RF input to the DCS1800 band PA. This is a 50 Ω input.
19	GND	
20	LB RF IN	RF input to the GSM900 band PA. This is a 50 Ω input.
21	GND	
22	GND	
23	GND	



Theory of Operation

The RF4180 is a dual-band (GSM900/DCS1800) transmit module (TXM) with fully integrated power control functionality, harmonic filtering, band selectivity, and TX/RX switching. The TXM is self-contained, with 50Ω I/O terminals with two symmetrical RX ports allowing the dual-band operation. The power control function eliminates all power control circuitry, including directional couplers, diode detectors, and power control ASICs, etc. The power control capability provides 50dB continuous control range, and 70dB total control range, using a DAC-compatible, analog voltage input. The TX Enable feature provides for PA activation (TX mode) or RX mode. Internal switching provides a low-loss, low-distortion path from the antenna port to the TX path (or RX port) while maintaining proper isolation.

The RF4180 dual-band TXM with integrated CMOS power control and switch decoder circuit which comes in a compact 6mmx8mmx1.2mm solution size simplifies the phone design by eliminating the need for the complicated control loop design, harmonic filters, TX/RX switch and possible matching components between the antenna and the power amplifier. The power control loop can be driven directly from the DAC output of the transceiver. The module has 2 RX ports for GSM900 and DCS1800 bands of operation. The two RX ports are symmetrical. They can be used for either GSM900 or DCS1800, easing any layout issues. The RF4180 module also integrates an ESD filter to provide excellent ESD protection of ±8kV at the antenna port. The three logic signals are used to control the mode of operation: TX Enable, GpCtrI0, and GpCtrI1.

The RF4180 uses RFMD's enhanced PowerStar[®] architecture power control technique with combo-bias control to achieve maximum efficiency at rated P_{OUT} (reduced power level). This architecture optimizes PAE at rated P_{OUT} with full supply voltage on collectors of PA and achieves max P_{OUT} by increasing base bias voltage which is a function of V_{RAMP} . With this combo-bias control, V_{CC} voltage is linear and reaches maximum value at $V_{RAMP}=V_{RAMP_RATED}$, (where $P_{OUT}=33$ dbm in LB and $P_{OUT}=30$ dbm in HB) and stays at maximum value until $V_{RAMP}=V_{RAMP_PEAK}$. The incorporated control loop regulates the collector voltage of the amplifiers while the stages are held at a constant bias until $V_{RAMP}=V_{RAMP_RATED}$. At $V_{RAMP}>V_{RAMP_RATED}$, the PA utilizes base-biasing for power margin enhancement to achieve peak output power.

Figure 1. RF4180 Basic Circuit Diagram

By regulating collector voltage (V_{CC}), stages are held in saturation across all power levels. As V_{CC} decreases, output power decreases as described in the equation below:

$$Pout_{dBm} = 10 \log \frac{(2 \cdot Vcc - Vsat)^2}{8 \cdot Rl \cdot 10^{-3}}$$

RF4180 power is ramped up and down through the V_{RAMP} control voltage which then controls the collector voltage of the amplifier stages. The RF signal applied at the RFIN pin must be a constant amplitude signal and should be high enough to saturate the amplifier. The input power (P_{IN}) range is indicated in the specifications. Power levels below this range will result in reduced maximum output power.

Power and Current Into Mismatch

Transmitters are often designed to operate only under perfect 50Ω loads. In the real application when a PA is subjected to mismatch conditions, performance degrades most likely in a reduction of output power, increased harmonic levels, increased transient spectrum, and catastrophic failures.

RF4180 has an integrated power flattening circuit that reduces the amount of current variation under load mismatch. When a mismatch is presented to the output of the PA, its output impedance is varied and could present a load that will increase output power. As the output power increases, so does current consumption. The current consumption can become very high if not monitored and limited. The power-flattening circuit is integrated onto the CMOS controller and requires no input from the user.

Into a mismatch, current varies as phase changes. The power-flattening circuit monitors current through an internal sense resistor. As current changes, the loop is adjusted in order to maintain current. Under nominal conditions, this loop is not activated and is seemingly transparent. The result is flatter power and reduced current into mismatch as shown in the following figures.

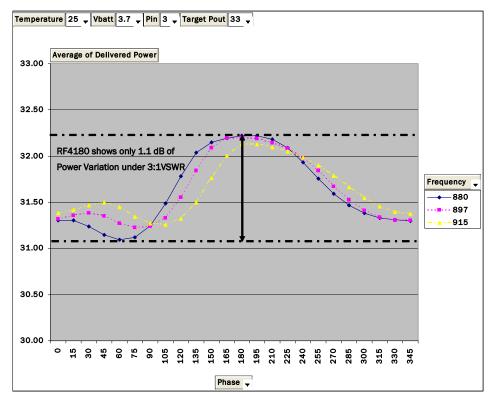


Figure 2. RF4180 Power Variation Under Mismatch VSWR 3:1

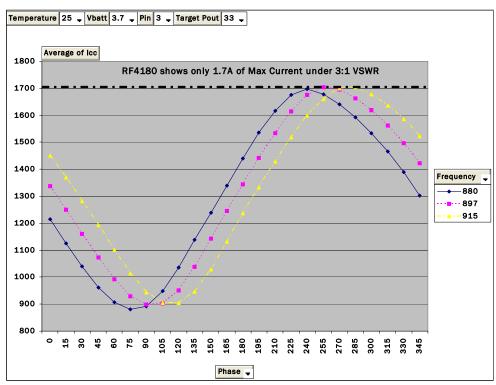


Figure 3. RF4180 Current Variation Under Mismatch VSWR 3:1

Electrostatic Discharge Sensitivity

The RF4180 TXM offers excellent ESD protection, 8kV at the antenna port. The contact discharge testing was performed in compliance with IEC 61000-4-2 requirements. The human body model testing and charged device model testing were performed in compliance with JESD22-A114 and JESD22-C101C.

Power Ramping and Timing

The RF4180 should be powered on according to the power-on sequence below. It is designed to prevent operation of the amplifier under conditions that could cause damage to the device or erratic operation.

There are some setup times associated with the control signals of the RF4180. The most important of these is the settling time between TXEN going high and when V_{RAMP} can begin to increase. This time is often referred to as the "pedestal" and is required so that the internal power control loop and bias circuitry can settle after being turned on. The RF4180 requires at least 2 µs or two quarter-bit times for proper settling of the power control loop.

The power-down sequence is in opposite order of the power-on sequence. As described in the figure below, V_{BATT} is applied first to provide bias to the silicon control chip. Then the RF drive is applied. Finally, when TX_ENABLE is high, the V_{RAMP} signal is held at constant 0.25V, and 2µs later, V_{RAMP} begins to ramp up. The shape of V_{RAMP} is important for maintaining the switching transients. The basic shape of the ramping function should be raised cosine to achieve best transient performance.

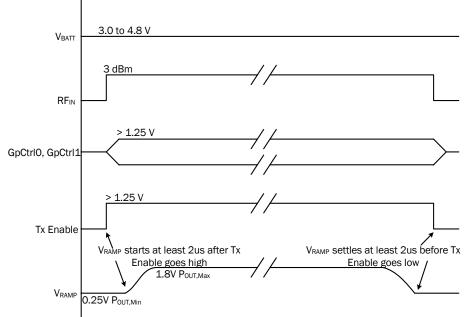
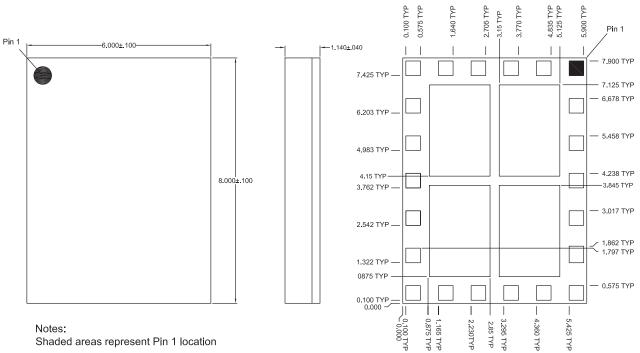


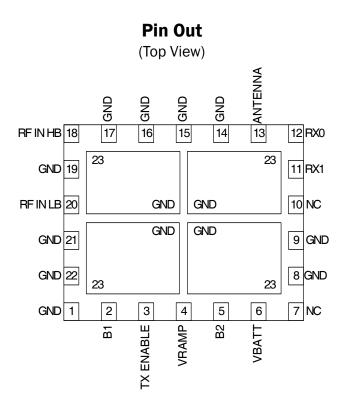
Figure 4. RF4180 Timing Diagram

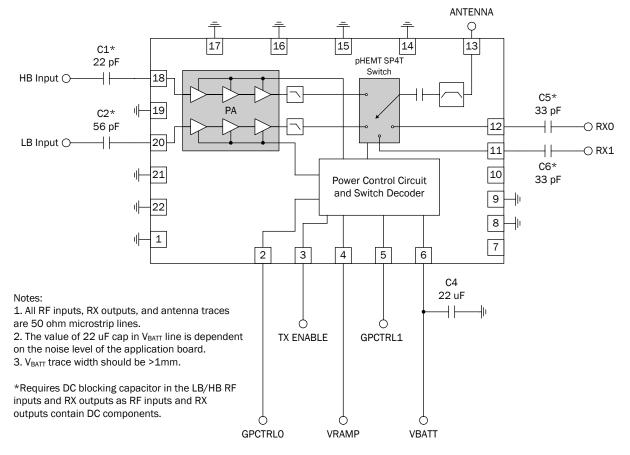
Power-On Sequence:


- 1. Apply V_{BATT}.
- 2. Apply GpCtrl0, GpCtrl1, RFIN, and TX Enable.
- 3. Apply V_{RAMP} at least $2\mu s$ after TX Enable.

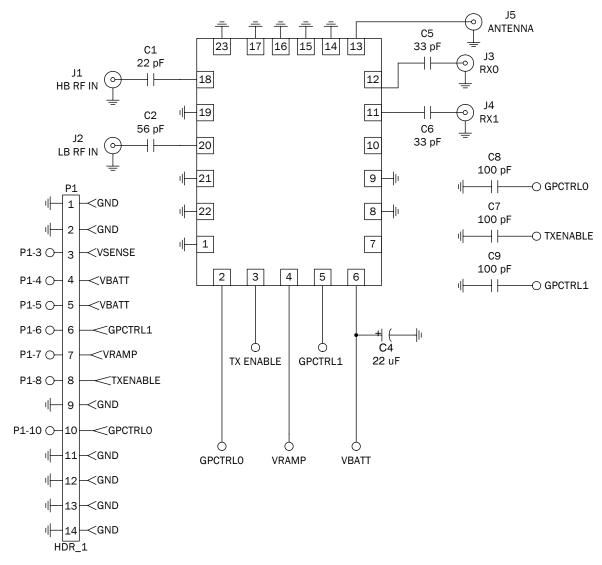
Summary

RF4180 is an enhanced performance transmit module which assures minimal external component count and compact module area. The integrated power flattening circuit in RF4180 significantly reduces current and power variation into load mismatch.

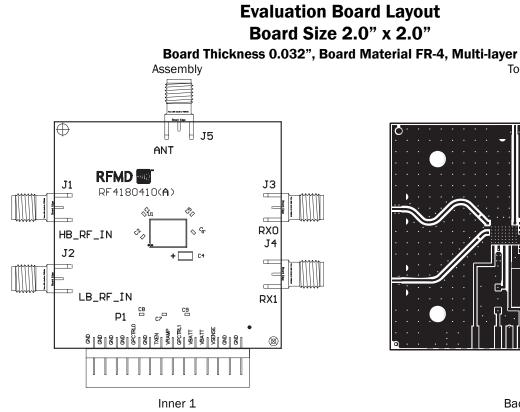


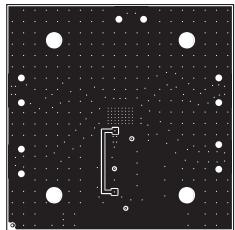

Package Drawing

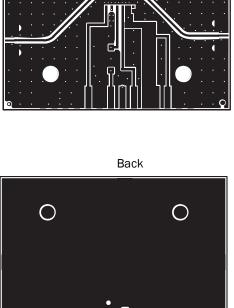
Shaded areas represent Pin 1 location

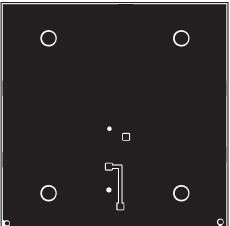


Application Schematic



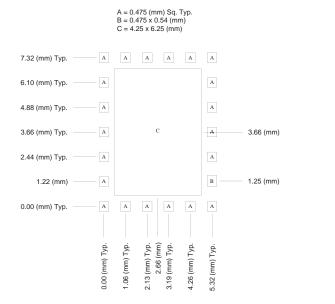


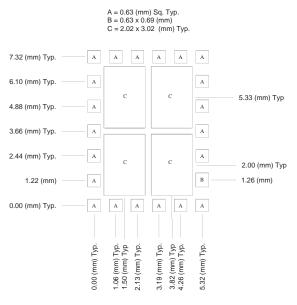

Evaluation Board Schematic



Тор

PCB Design Requirements


PCB Surface Finish


The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3µinch to 8µinch gold over 180µinch nickel.

PCB Land Pattern Recommendation

PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

PCB Metal Land and Solder Mask Pattern

RF4180 Metal Land Pattern

RF4180 Solder Mask Pattern

RoHS* Banned Material Content

RoHS Compliant:	Yes
Package total weight in grams (g):	0.121
Compliance Date Code:	-
Bill of Materials Revision:	-
Pb Free Category:	e4

Bill of Materials	Parts Per Million (PPM)						
	Pb	Cd	Hg	Cr VI	PBB	PBDE	
Die	0	0	0	0	0	0	
Molding Compound	0	0	0	0	0	0	
Lead Frame	0	0	0	0	0	0	
Die Attach Epoxy	0	0	0	0	0	0	
Wire	0	0	0	0	0	0	
Solder Plating	0	0	0	0	0	0	

This RoHS banned material content declaration was prepared solely on information, including analytical data, provided to RFMD by its suppliers, and applies to the Bill of Materials (BOM) revision noted above.

* DIRECTIVE 2002/95/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 27 January 2003 on the restriction of the use of certain hazardous substances in electrical and electronic equipment

