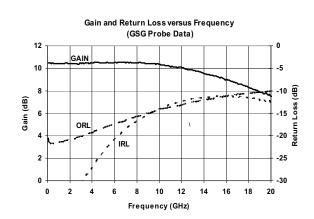

DC to 20GHz, CASCADABLE PHEMT MMIC AMPLIFIER

Package: Die, 0.88mm x 0.75mm



Product Description

RFMD's SUF-1000 is a monolithically matched high $\rm IP_3$ broadband pHemt MMIC amplifier. The self-biased direct-coupled topology provides exceptional cascadable performance from DC to 20GHz. Its efficient operation from a single 5V supply and its compact size (0.88mm x 0.75mm) make it ideal for high-density multi-chip module applications. It is well suited for wideband instrumentation and direct-conversion systems.

DS120220

Features

- Broadband Flat Gain = 10dB
- P1dB = 14dBm
- Direct-Coupled Topology
- Efficient Single-Supply Operation: 5V, 45mA
- Low Gain Variation versus Temperature
- Compact Die Size (0.75mm x 0.88mm)
- Patented Self-Bias Darlington

Applications

- Ultra-Broadband Communications
- Test Instrumentation
- Military and Space
- LO and IF Mixer Applications
- Replaces Traditional Dual-Supply Distributed Amplifiers

Parameter	Specification			Unit	Condition	
raiaiiietei	Min.	Тур.	Max.	OIIIL	Condition	
Small Signal Power Gain		10.5		dB	2GHz and 6GHz	
		9.0		dB	16GHz	
Output Power at 1dB Compression		14.0		dBm	2GHz, 6GHz, and 16GHz	
Output Third Order Intercept Point		26.0		dBm	2GHz and 6GHz	
		25.5		dBm	16GHz	
Noise Figure		4.5		dB	2GHz and 6GHz	
		5.0		dB	16GHz	
Input Return Loss		-37.0		dB	2GHz	
		-20.5		dB	6GHz	
		-11.5		dB	16GHz	
Output Return Loss		-21.5		dB	2GHz	
		-17.5		dB	6GHz	
		-11.0		dB	16GHz	
Reverse Isolation		-21.0		dB	2GHz	
		-17.5		dB	6GHz	
		-17.0		dB	16GHz	
Device Operating Voltage		3.4		V		
Device Operating Current		46		mA		
Gain Variation vs. Temperature		-0.01		dB/°C		
Thermal Resistance (junction to backside)		262		°C/W		

Test Conditions: V = 5.0V R_{BIAS} = 35Ω, I_D = 46mA, OIP₃ Tone Spacing = 1MHz, P_{OUT} per tone = 0dBmZ_S = Z_L = 50Ω, 25 °C, GSG Probe Data with Bias Tees

SUF-1000

Absolute Maximum Ratings

Parameter	Rating	Unit
Max Device Current (I _D)	70	mA
Max Device Voltage (V _D)	4	V
Max RF Input Power	20	dBm
Max Dissipated Power	280	mW
Max Junction Temperature (T _J)	150	°C
Operating Temperature Range (T _L)	-40 to + 85	°C
Max Storage Temperature	-65 to +150	°C
Human Body Model	Class 1A	

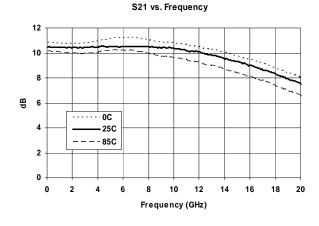
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression: $I_DV_D < (T_J - T_L)/R_{TH}$, j-l and $T_L = Backside$ of die

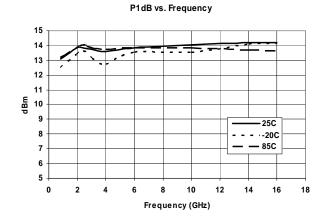
Caution! ESD sensitive device.

CAULUTII LOD SETISITIVE DEVICE.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

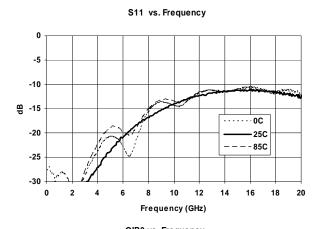

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in college.

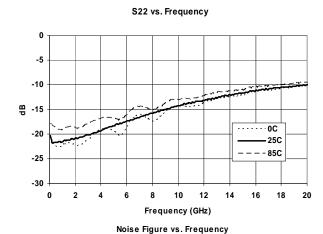

Typical Performance (GSG Probe Data)

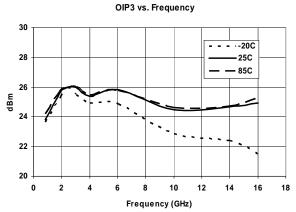
Freq	VD	Current	Gain	P1dB	OIP3	S11	S22	NF
(GHz)	(V)	(mA)	(dB)	(dBm)	(dBm)	(dB)	(dB)	(dB)
0.10	3.4	46.0	10.4			-34.0	-21.0	
0.50	3.4	46.0	10.4			-36.0	-22.0	
0.85	3.4	46.0	10.4	13.0	24.5	-37.0	-22.0	4.4
2.00	3.4	46.0	10.4	14.0	26.0	-34.0	-21.0	4.4
4.00	3.4	46.0	10.5	13.5	26.0	-26.0	-19.0	4.4
6.00	3.4	46.0	10.5	14.0	26.0	-20.0	-17.0	4.6
10.00	3.4	46.0	10.3	14.0	25.0	-14.0	-14.0	4.7
16.00	3.4	46.0	9.0	14.0	25.5	-12.0	-11.0	5.1
20.00	3.4	46.0	7.6			-13.0	-10.0	5.1

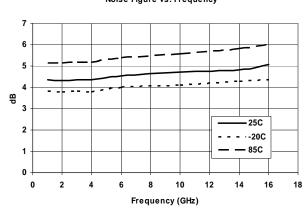
Test Conditions: GSG Probe Data With Bias Tees, R_{BIAS} = 35Ω OIP₃ Tone Spacing = 1MHz, P_{OUT} per tone = 0dBm, 25°C

Typical Performance

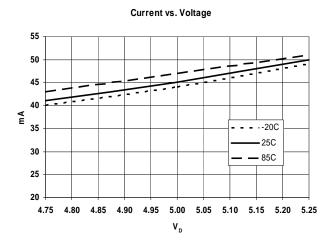


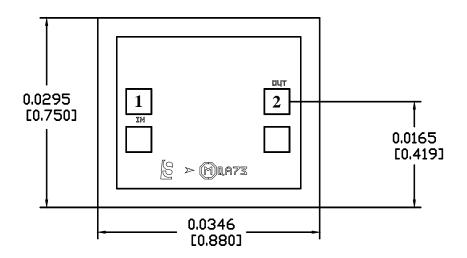






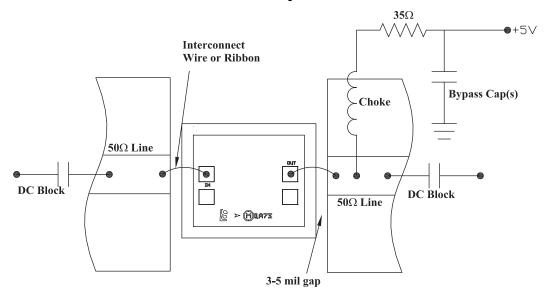
rfmd.com




Current Variation Versus Temperature

Pin	Function	Description	
1	RFIN	This pad is DC coupled and matched to 50Ω . An external DC block is required.	
2	RFOUT/BIAS	This pad is DC coupled and matched to 50Ω . Bias is applied through this pad.	
Die	GND	Die bottom must be connected to RF/DC ground using silver-filled epoxy.	
Bottom			

Pad Description


Notes:

- 1. All dimensions in inches (millimeters).
- 2. No connection required for unlabeled bond pads.
- 3. Die thickness is 0.004 [0.10]
- 4. Typical bond pad is 0.004 [0.10] square.
- 5. Backside metalization: Gold.
- 6. Backside is ground.
- 7. Bond pad metalization: Gold.

Device Assembly

