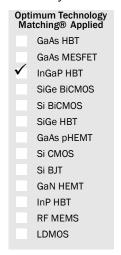
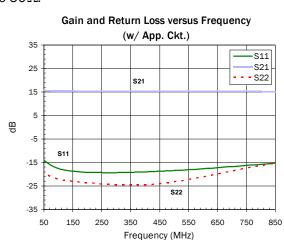


50 MHz to 850 MHz, CASCADABLE


Package: SOT-89



Product Description

RFMD's SBB1089Z is a high performance InGaP HBT MMIC amplifier utilizing a Darlington configuration with an active bias network. The active bias network provides stable current over temperature and process Beta variations. Designed to run directly from a 5V supply, the SBB1089Z does not require a dropping resistor as compared to typical Darlington amplifiers. The SBB1089Z product is designed for high linearity 5V gain block applications that require small size and minimal external components. It is internally matched to $50\,\Omega$.

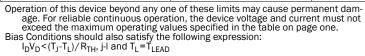
Features

- OIP₃=43.1dBm at 240MHz
- P_{1dB}=19.6dBm at 500MHz
- Single Fixed 5V Supply
- Robust 1000V ESD, Class 1C
- Patented Thermal Design and Bias Circuit
- Low Thermal Resistance

Applications

- Receiver IF Amplifier
- Cellular, PCS, GSM, UMTS
- Wireless Data, Satellite Terminals

Doughastar	Specification			Unit	O a madition	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Small Signal Gain		15.5		dB	70MHz	
	14.0	15.5	17.0	dB	240 MHz	
	14.0	15.5	17.0	dB	400MHz	
Output Power at 1dB Compression		19.0		dBm	70MHz	
		19.0		dBm	240 MHz	
	18.0	19.0		dBm	400MHz	
Third Order Intercept Point		42.0		dBm	70MHz	
		43.0		dBm	240 MHz	
	38.5	40.5		dBm	400MHz	
Return Loss		50 to 850		MHz	Minimum 10dB	
Input Return Loss	14.0	18.0		dB	70 MHz to 5000 MHz	
Output Return Loss	12.0	16.0		dB	70 MHz to 5000 MHz	
Noise Figure		3.5	4.2	dB	500MHz	
Reverse Isolation		18.0		dB	70MHz to 5000MHz	
Thermal Resistance		48.8		°C/W	junction - lead	
Device Operating Voltage		5.0	5.3	V		
Device Operating Current	82.0	90.0	98.0	mA		


 $\textbf{Test Conditions: V}_{D} = \textbf{5V, I}_{D} = \textbf{90 mA Typ., OIP}_{3} \textbf{ Tone Spacing} = \textbf{1MHz, P}_{OUT} \textbf{ per tone} = \textbf{0 dBm, T}_{L} = \textbf{25 °C, Z}_{S} = \textbf{Z}_{L} = \textbf{50}\Omega, \textbf{ Tested with Bias Tees Pour Per tone} = \textbf{0 dBm, T}_{L} = \textbf{25 °C, Z}_{S} = \textbf{Z}_{L} = \textbf{50}\Omega, \textbf{25 conditions} = \textbf{25 con$

SBB1089Z

Absolute Maximum Ratings

Parameter	Rating	Unit
Device Current (I _D)	110	mA
Device Voltage (V _D)	5.5	V
RF Input Power	24	dBm
Junction Temp (T _J)	+150	°C
Operating Temp Range (T _L)	-40 to +85	°C
Storage Temp	+150	°C
Power Dissipation	0.61	W
ESD Rating - Human Body Model (HBM)	Class 1C	
Moisture Sensitivity Level	MSL2	

Caution! ESD sensitive device.

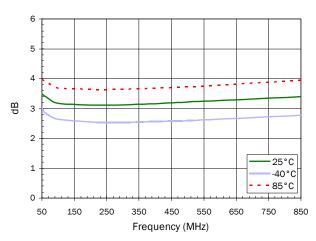
Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

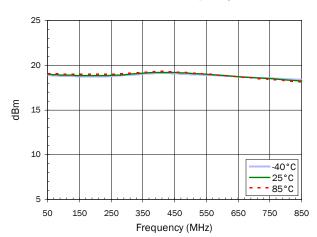
RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

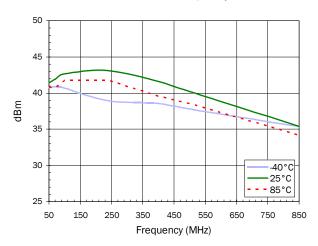
Typical RF Performance at Key Operating Frequencies (With 240MHz Application Circuit)

Parameter	Unit	50MHz	70MHz	100	240	400	500	850
				MHz	MHz	MHz	MHz	MHz
Small Signal Gain, S ₂₁	dB	16.0	15.5	15.5	15.5	15.5	15.5	15.0
Output Third Order Intercept Point, OIP ₃	dBm	41.5	42.0	43.0	43.0	41.0	40.0	35.0
Output Power at 1dB Compression, P _{1dB}	dBm	19.0	19.0	19.0	19.0	19.0	19.0	18.0
Input Return Loss, S ₁₁	dB	13.0	16.0	17.0	19.0	19.0	18.0	15.0
Output Return Loss, S ₂₂	dB	18.0	20.0	21.0	23.0	24.0	23.0	17.0
Reverse Isolation, S ₁₂	dB	18.0	18.0	18.0	18.0	18.0	18.0	18.0
Noise Figure, NF	dB	3.5	3.3	3.2	3.1	3.2	3.2	3.4


 $\begin{tabular}{ll} Test Conditions: $V_{CC}=5V$ & $I_D=90\,mA\ Typ.$ & OIP_3\ Tone\ Spacing=1MHz, P_{OUT} per tone=0\,dBm\ $T_L=25\,^{\circ}C$ & $Z_S=Z_L=50\Omega$ & Parameter $I_S=25\,^{\circ}C$ & $I_S=2$

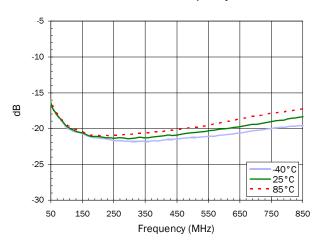


Data on Charts taken with 240 MHz App. Ckt.

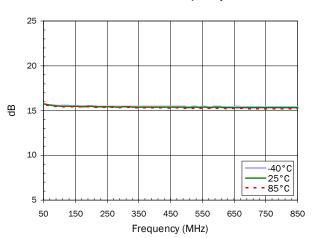

Noise Figure versus Frequency

P1dB versus Frequency

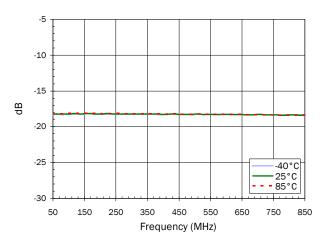
OIP3 versus Frequency

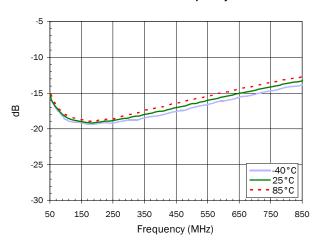


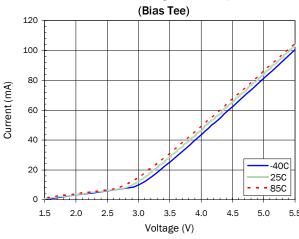
SBB1089Z



S-Parameters over Temperature (Bias Tee)

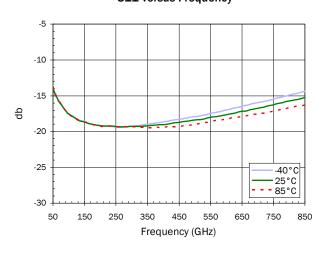

S11 versus Frequency

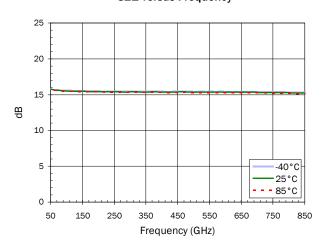

S21 versus Frequency


S12 versus Frequency

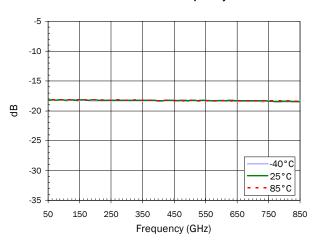
S22 versus Frequency

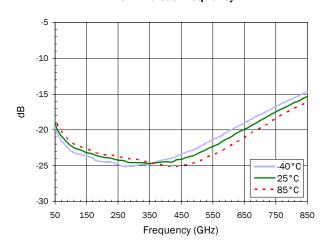
Current versus Voltage Over Temperature

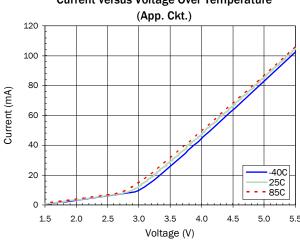




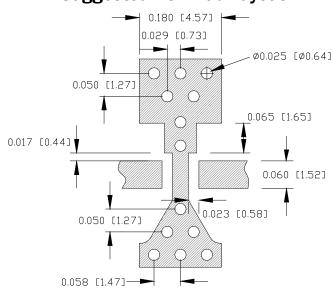
240 MHz Application Circuit S-Parameters over Temperature

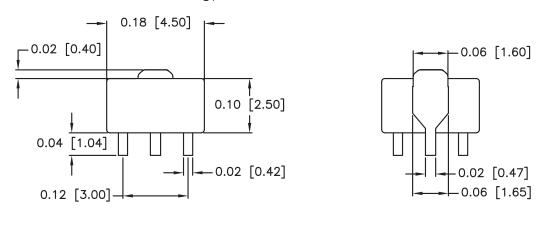

S11 versus Frequency

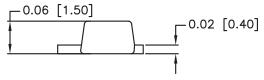

S21 versus Frequency


S12 versus Frequency

S22 versus Frequency

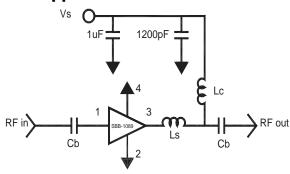

Current versus Voltage Over Temperature


Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor chosen for the frequency of operation.
2, 4	GND	Connection to ground. Use via holes for best performance to reduce lead inductance as close to ground leads as possible.
3	RF OUT/BIAS	RF output and bias pin. DC voltage is present on tis pin, therefore a DC blocking capacitor is necessary for proper operation.

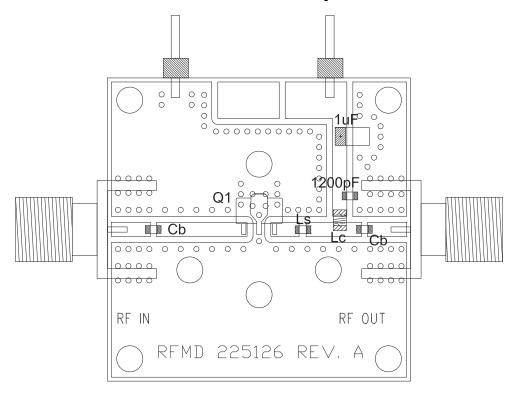

Suggested PCB Pad Layout

Package Drawing

Dimensions in inches (millimeters)
Refer to drawing posted at www.rfmd.com for tolerances.

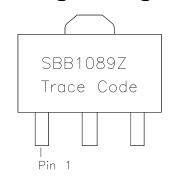


rfmd.com


Application Circuit Element Values

Reference Designator	Frequency (MHZ) 50 to 850		
СВ	8200 pF		
L _C	1500 nH 0805LS Coilcraft		
L _S	2.7 nH Toko		

Application Schematic


Evaluation Board Layout

SBB1089Z

Package Marking

Ordering Information

Ordering Code	Description
SBB1089Z	7" Reel with 1000 pieces
SBB1089ZSQ	Sample bag with 25 pieces
SBB1089ZSR	7" Reel with 100 pieces
SBB1089ZPCK1	50MHz to 850MHz PCBA with 5-piece sample bag