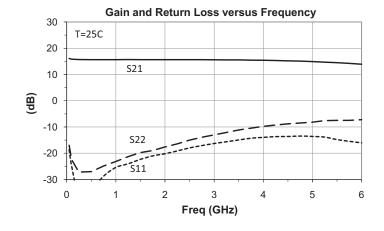


rfmd.com

SBB-4082S

50MHz to 6000MHz InGaP HBT ACTIVE BIAS GAIN BLOCK

Package Style: Hermetic, 2-pin, 5.8mmx2.8mm



Features

- Single Fixed 5V Supply
- Patented Self Bias Circuit and Thermal Design
- Hermetic Package for High-Reliability Applications
- OIP3=38dBm at 1150MHz
- PldB=19dBm at 1150MHz

Applications

- Military and Space Communications.
- Industrial Applications
- Aerospace and Defense

Product Description

RFMD's SBB-4082S is a high-performance InGaP HBT MMIC amplifier utilizing a Darlington configuration with an active bias network in a hermetic package. The active bias network provides stable current over temperature and Beta process variations. The SBB-4082S is designed for high linearity gain block military and industrial applications requiring excellent gain flatness, small size, minimal external components and hermetic packaging. RFMD can provide various levels of device screening for military or high-reliability space applications.

Ordering Information

SBB-4082S Hermetic Package

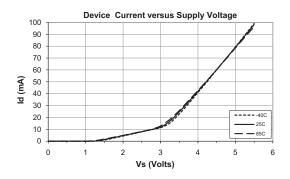
Optimum Technology Matching® Applied

☐ GaAs HBT	☐ SiGe BiCMOS	☐ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET ✓ InGaP HBT	☐ Si BiCMOS	☐ Si CMOS	☐ RF MEMS
▼ InGaP HBT	☐ SiGe HBT	☐ Si BJT	

Absolute Maximum Ratings

_		
Parameter	Rating	Unit
Max Device Current (I _D)	100	mA
Max Device Voltage (V _D)	5.5	V
Max RF Input Power	+24	dBm
Max Junction Temperature (T _J)	+150	°C
Operating Temperature Range	-40 to +85	°C
Storage Temperature Range	-55 to +150	°C
ESD - Human Body Model (HBM)	Class 1C	
MSL - Moisture Sensitivity Level	Hermetic	

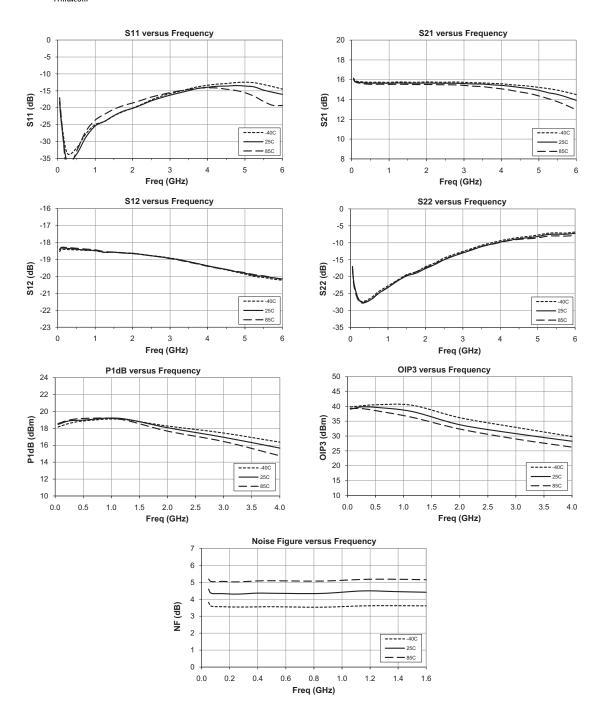
Caution! ESD sensitive device.

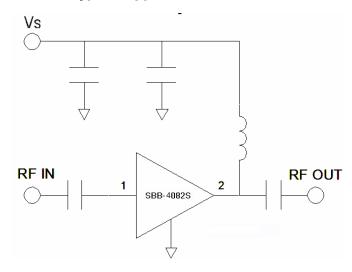

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EUDirective 2002/95/EC (at time of this document revision).

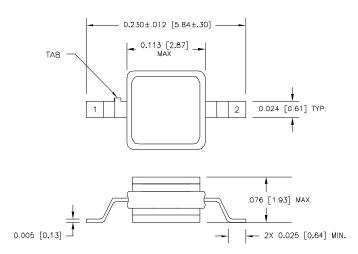
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Parameter	Specification		Unit	Condition	
Faranieler	Min.	Тур.	Max.	Unit	Condition
Small Signal Gain	14	15.5	18	dB	1000 MHz to 1300 MHz
		15		dB	4GHz
Output Power at 1dB Compression	18	19	22	dBm	1150MHz
OIP ₃	33	38		dBm	F1=1150MHz, F2=1151MHz
Input Return Loss	11	20		dB	1000MHz to 1300MHz
		14		dB	4GHz
Output Return Loss	10	20		dB	1000MHz to 1300MHz
		10		dB	4GHz
Reverse Isolation	17	18.5		dB	1000MHz to 1300MHz
Noise Figure		4.5	6.0	dB	1150MHz
Operating Voltage		5.0		V	
Operating Current	58	80	92.0	mA	
Thermal Resistance		87		C/W	Junction to Lead


Test Conditions: $V_D=5V$ $I_D=80\,\text{mA}$ Typ. OIP_3 Tone Spacing=1MHz, P_{OUT} per tone=5dBm, $T_L=25\,^{\circ}$ C, $Z_S=Z_L=50\,\Omega$, Tested with Bias Tees



rfmd.com


Typical Application Schematic

Pin	Function	Description
1	RF IN	RF input pin. This pin requires the use of an external blocking capacitor chosen for the frequency of operation.
2	RF OUT/DC Bias	RF output and bias pin. This pin requires the use of an external blocking capacitor chosen for the frequency of operation.
Package Paddle	GND	Package backside must be connected to RF/DC ground.

Package Drawing

