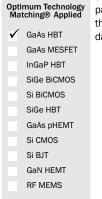
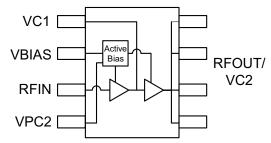


1700 MHz to 2200 MHz 1 WATT POWER AMP WITH ACTIVE BIAS


Package: Exposed Pad SOIC-8


Product Description

RFMD's SPA2318Z is a high efficiency GaAs Heterojunction Bipolar Transistor (HBT) amplifier housed in a low-cost surface-mountable plastic package. These HBT amplifiers are fabricated using molecular beam epitaxial growth technology which produces reliable and consistent performance from wafer to wafer and lot to lot. This product is specifically designed for use as a driver amplifier for infrastructure equipment in the 1960MHz and 2140MHz bands. Its high linearity makes it an ideal choice for multi-carrier and digital applications. The matte tin finish on the lead-free package utilizes a post annealing process to mitigate tin whisker forma

K I

tion and is RoHS compliant per EU Directive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide or halogenated fire retardants.

Features

- High Linearity Performance: +21dBm IS-95 Channel Power at -55dBc ACP; +20.7dBm WCDMA Channel Power at -50dBc ACP; +47dBm Typ. OIP₃
- On-Chip Active Bias Control
- High Gain: 24dB Typ. at 1960 MHz
- Patented High Reliability GaAs HBT Technology
- Surface-Mountable Plastic Package

Applications

- WCDMA Systems
- PCS Systems
- Multi-Carrier Applications

Parameter	Specification			Unit	Condition
Farameter	Min.	Тур.	Max.	Unit	Condition
Frequency of Operation	1700		2200	MHz	
Output Power at 1dB Compression ^[1]		29.5		dBm	1960MHz
		29.5		dBm	2140 MHz
Adjacent Channel Power ^[1]		-55.0		dBc	1960MHz, IS-95 at P _{OUT} =21.0dBm, WCDMA at P _{OUT} =20.7dBm
		-50.0	-47.0	dBc	2140MHz
Small Signal Gain ^[1,2]		24.0		dB	1960MHz
	21.0	23.5	24.5	dB	2140MHz
Input VSWR [1,2]		1.6:1			1960MHz
		1.6:1			2140MHz
Output Third Order Intercept Point [2]		46.5		dBm	1960MHz, Power out per tone=+14dBm
		47.0		dBm	2140MHz
Noise Figure ^[1,2]		5.5		dB	1960MHz
		5.5		dB	2140MHz
Device Current ^[1,2]	360	400	425	mA	I _{BIAS} =10mA, I _{C1} =70mA, I _{C2} =320mA
Device Voltage [1,2]	4.75	5.0	5.25	V	
Thermal Resistance (Junction - Lead)		31		°C/W	T _L =85°C

Test Conditions: $Z_0=50\Omega$ Temp=25°C V_{CC}=5.0V [1] Optimal ACP tune [2] Optimal IP₃ tune

RF MICRO DEVICES®, RFMD®, Optimum Technology Matching®, Enabling Wireless Connectivity^{IM}, PowerStar®, POLARIS^{IM} TOTAL RADIO^{IM} and UtimateBlue^{IM} are trademarks of RFMD, LLC. BLUETOOTH is a trade mark rowned by Rijuetooth SIG. Inc. II S.A. and licensed for use by RFMD. All other trade names trademarks and redistance trademarks are the non-erv of their respective rowners. ©2006 RF Micro Devices. Inc.

rfmd.com

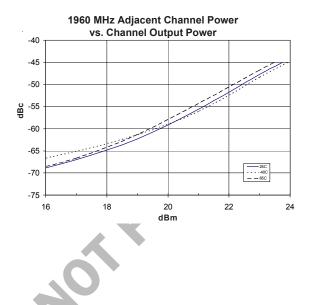
Absolute Maximum Ratings

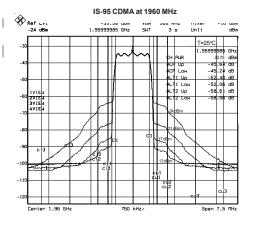
5					
Parameter	Rating	Unit			
Max Supply Current (I _{C1}) at V _{CC} typ.	150	mA			
Max Supply Current (I _{C2}) at V _{CC} typ.	750	mA			
Max Device Voltage (V $_{\rm CC}$) at I $_{\rm CC}$ typ.	6.0	V			
Max RF Input Power	16	dBm			
Max Junction Temp (T_J)	+160	°C			
Max Storage Temp	+150	°C			
Moisture Sensitivity Level	3	MSL			

Operation of this device beyond any one of these limits may cause permanent dam-age. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one. Bias Conditions should also satisfy the following expression:

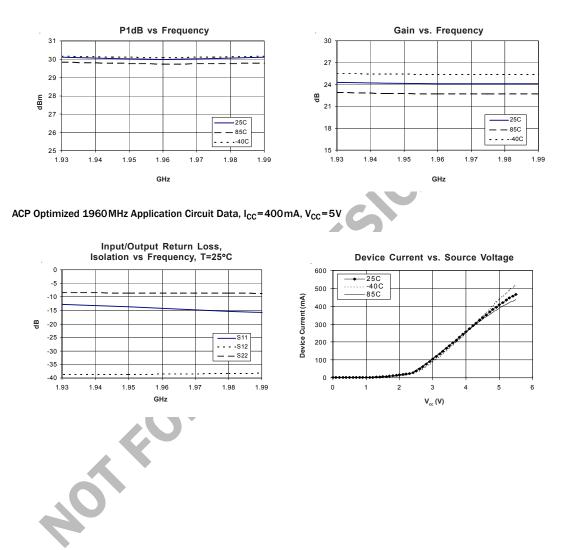
 $I_{D}V_{D} < (T_{I} - T_{L}) / R_{TH}, j-1$

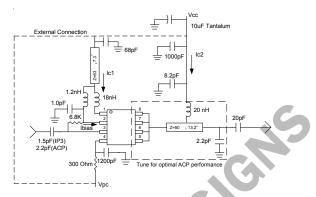
Caution! ESD sensitive device.


Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions of the device of the device and the device of the device

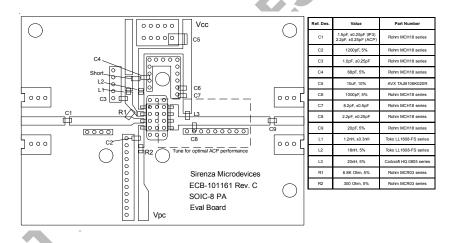

tions is not implied. The information in this publication is believed to be accurate and reliable. However, no The morimation in this assumed by RF Micro Devices to be according and reliable. However, includes a sequence of a sequence of the assumed by RF Micro Devices, inc. ('RFRM') for its use, no rofor any infringement of patents, or other rights of third particles, resulting from its use. No license is granued by implication or otherwise under any patent or patent rights of RFMD. RFRD. RFRD.

RFMD Green: RoHS compliant per EU Directive 2002/95/EC, halogen free per IEC 61249-2-21, < 1000 ppm each of antimony trioxide in polymeric materials and red phosphorus as a flame retardant, and <2% antimony in solder.

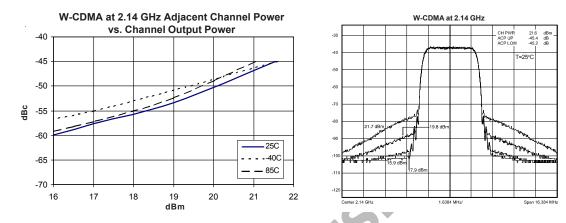

ACP Optimized 1960MHz Application Circuit Data, I_{CC}=400mA, V_{CC}=5V IS-95, 9 Channels Forward

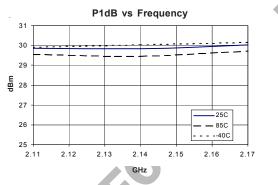


ACP Optimized 1960MHz Application Circuit Data, I_{CC}=400mA, V_{CC}=5V

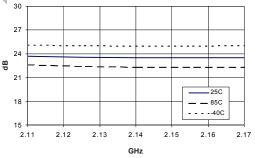


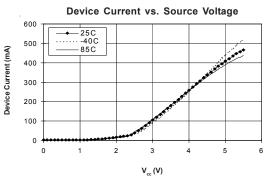
1930 MHz to 1990 MHz Application Schematic

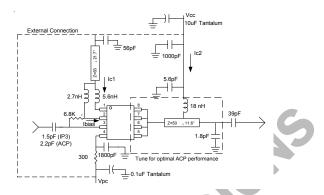

1930MHz to 1990MHz Evaluation Board Layout and Bill of Materials

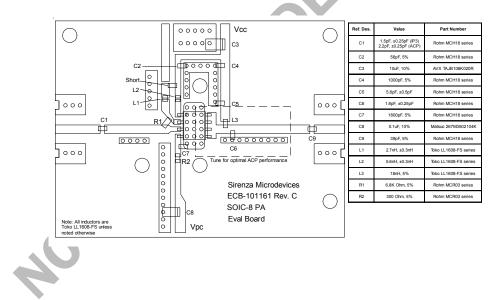

ACP Optimized 2140MHz Application Circuit Data, I_{CC} =400mA, V_{CC} =5V IS-95, WCDMA setup is

PCCPCH+PSCH+SSCH+CPICH+PICH+64DPCH, 10.5dB peak to average at 0.001% probability



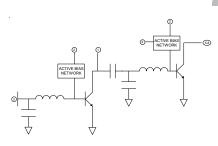



Gain vs. Frequency

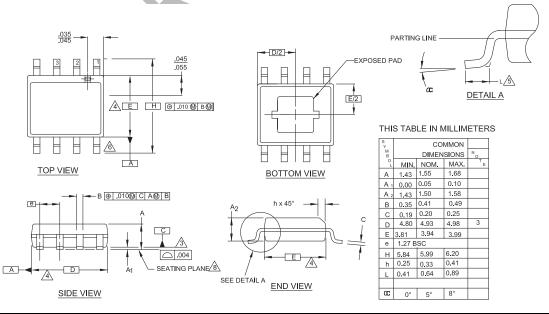


2110 MHz to 2170 MHz Application Schematic

2110 MHz to 2170 MHz Evaluation Board Layout and Bill of Materials

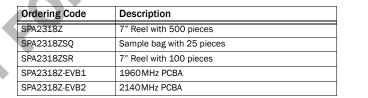


rfmd.com


Pin	Function	Description
1	VC1	VC1 is the supply voltage for the first stage transistor. The configuration as shown on the Application Schematic is required for optimum RF performance.
2	VBIAS	VBias is the bias control pin for the active bias network. Recommended configuration is shown in the Application Sche- matic.
3	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor as shown in the Application Schematic.
4	VPC2	VPC2 is the bias control pin for the active bias network for the second stage. The recommended configuration is shown in the Application Schematic.
5, 6, 7, 8	RF OUT / VC2	RF output and bias pins. Bias should be supplied to this pin through an external RF choke. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see Application Schematic). The supply side of the bias network should be well bypassed. An output matching network is necessary for optimum performance.
EPAD	GND	Exposed area on the bottom side of the package needs to be soldered to the ground plane of the board for thermal and RF performance. Several vias should be located under the EPAD as shown in the recommended land pattern.

Simplified Device Schematic




Package Drawing

Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

