Freescale Semiconductor

Data Sheet: Advance Information

Document Number: MPC5604E Rev. 4, Jan 2012

MPC5604E Microcontroller Data Sheet

- Single issue, 32-bit CPU core complex (e200z0h)
	- Compliant with Power Architecture[®] embedded category
	- Variable Length Encoding (VLE) only
- **Memory**
	- 512 KB on-chip Code Flash with ECC and erase/program controller
	- additional 64 (4 \times 16) KB on-chip Data Flash with ECC for EEPROM emulation
	- 96 KB on-chip SRAM with ECC
- Fail-safe protection
	- Programmable watchdog timer
	- Non-maskable interrupt
	- Fault collection unit
- Nexus 2+ interface
- Interrupts and events
	- 16-channel eDMA controller
	- 16 priority level controller
	- Up to 32 external interrupts
	- PIT implements four 32-bit timers
	- 120 interrupts are routed via INTC
- General purpose I/Os
	- Individually programmable as input, output or special function
	- $-$ 39 on LQFP64
	- -71 on LQFP100¹
- 1 general purpose eTimer unit
	- 6 timers each with up/down capabilities
	- 16-bit resolution, cascadeable counters
	- Quadrature decode with rotation direction flag
- 1.The 100-pin package is not a production package. It is used for software development only.

100 LQFP 14 mm x 14 mm

64 LQFP 10 mm x 10 mm

- Double buffer input capture and output compare
- Communications interfaces
	- 2 LINFlex channels ($1 \times$ Master/Slave, $1 \times$ Master Only)
	- 3 DSPI controllers with automatic chip select generation (up to 2/2/4 chip selects)
	- 1 FlexCAN interface (2.0B Active) with 32 message buffers
- One 10-bit analog-to-digital converter (ADC)
	- 8 input channels
		- 4 channels routed to the pins
		- 4 internal connections: 1x temperature sensor, 1x core voltage, 1x IO voltage, 1x VGate Current
	- Conversion time ≤ 1 μ s including sampling time at full precision
	- 4 analog watchdogs with interrupt capability
- On-chip CAN/UART bootstrap loader with Boot Assist Module (BAM)
- On-chip TSENS
- 100 MBit Fast Ethernet Controller (FEC)
	- Supports precision timestamps
	- MII on 100-pin LQFP package
	- MII-lite on 64-pin LQFP package
- JPEG/MJPEG 8/12bit Encoder
- 6 x stereo channels audio interface
- $2x I²C$ controller module
- CRC module

This document contains information on a product under development. Freescale reserves the right to change or discontinue this product without notice.

© Freescale Semiconductor, Inc., 2012. All rights reserved.

Table of Contents

1 Overview

This document provides electrical specifications, pin assignments, and package diagrams for the MPC5604E series of microcontroller units (MCUs).

MPC5604E microcontrollers are members of a new family of next generation microcontrollers built on the Power Architecture. This document describes the features of the family and options available within the family members, and highlights important electrical and physical characteristics of the devices.

The MPC5604E microcontroller is a gateway system designed to move data from different sources via Ethernet to a receiving system and vice versa. The supported data sources and sinks are:

- Video data (with $8/10/12$ bits per data word)
- Audio data ($6 \times$ stereo channels)
- RADAR data (2×12) bit with \leq 1 as per sample, digitized externally and read in via SPI)
- Other serial communication interfaces including CAN, LIN, and SPI

The Ethernet module has a bandwidth of 10/100 Mbits/sec and supports precision time stamps (IEEE1588). Unshielded twisted pair cables are used to transfer data (via Ethernet) in the car, resulting in a significant reduction of wiring costs by providing inexpensive high bandwidth data links.

1.1 Device summary

[Table 1](#page-2-2) summarizes the MPC5604E device.

NOTE

The 100-pin package is not a production package. It is used for software development only.

Table 1. Device summary

Overview

Table 1. Device summary (continued)

¹ The 100-pin package is not a production package. It is used for software development only.

² This feature is supported by design, but subject to confirmation after device characterization.

1.2 Block diagram

[Figure 1](#page-4-0) shows a top-level block diagram of the MPC5604E MCU.

Overview

Figure 1. MPC5604E block diagram

2 Package pinouts and signal descriptions

2.1 Package pinouts

The LQFP pinouts are shown in the following figures.

Figure 3. 100-pin LQFP pinout (top view)¹

^{1.}The 100-pin package is not a production package. It is used for software development only.

2.2 Signal descriptions

The following sections provide signal descriptions and related information about the functionality and configuration of the MPC5604E devices.

2.2.1 Power supply and reference voltage pins

[Table 2](#page-7-2) lists the power supply and reference voltage for the MPC5604E devices.

Table 2. Supply pins

MPC5604E Microcontroller Data Sheet, Rev. 4

¹ The 100-pin package is not a production package. It is used for software development only.

2.2.2 System pins

[Table 3](#page-9-1) and [Table 4](#page-10-0) contain information on pin functions for the MPC5604E devices. The pins listed in [Table 3](#page-9-1) are single-function pins. The pins shown in [Table 4](#page-10-0) are multi-function pins, programmable via their respective Pad Configuration Register (PCR) values.

Symbol	Description	Direction	Pad speed ¹		Pin				
			$SRC = 0$	$SRC = 1$	64-pin	100-pin 2			
Dedicated pins									
NMI	Non-maskable Interrupt	Input only	Slow			1			
XTAL	Oscillator amplifier output	Output only			13	20			
EXTAL	Input for oscillator amplifier circuit and internal clock generator	Input only			14	21			
TDI ³	JTAG test data input	Input only	Slow	Medium	40	63			
TMS ³	JTAG state machine control	Input only	Slow	Medium	41	64			
TCK ³	JTAG clock	Input only	Slow		42	65			
TDO ³	JTAG test data output	Output only	Slow	Medium	43	66			
Reset pin									
RESET	Bidirectional reset with Schmitt trigger characteristics and noise filter	Bidirectional	Medium		15	22			
POR B	Power-on reset	Input only			31	45			

Table 3. System pins

¹ SRC values refer to the value assigned to the Slew Rate Control bits of the pad configuration register.

² The 100-pin package is not a production package. It is used for software development only.

 3 Additional board pull resistors are recommended when JTAG pins are not being used on the board or application.

2.2.3 Pin muxing

[Table 4](#page-10-0) defines the pin list and muxing for the MPC5604E devices.

Each row of [Table 4](#page-10-0) shows all the possible ways of configuring each pin, via "alternate functions". The default function assigned to each pin after reset is the ALT0 function.Pins marked as external interrupt capable can also be used to resume from STOP and HALT mode.

MPC5604E devices provide four main I/O pad types depending of the associated functions:

- *Slow pads* are the most common, providing a compromise between transition time and low electromagnetic emission.
- *Medium pads* provide fast enough transition for serial communication channels with controlled current to reduce electromagnetic emission.
- *Fast pads* provide maximum speed. They are used for improved Nexus debugging capability.

Medium and Fast pads can be used in slow configuration to reduce the electromagnetic emissions, at the cost of reducing AC performance.

Port	PCR	Alternate	Functions	Peripheral ³	UO	Pad speed ⁵		Pin ⁶	
pin	register	function ^{1,2,8}			direction ⁴	$SRC = 0$	$SRC = 1$	64-pin	100 -pin 7
	Port A (16-bit)								
A[0]	PCR[0]	ALT ₀ ALT1 ALT ₂ ALT ₃	GPIO[0] D[0] D[11] SIN EIRQ[0]	SIUL SAI0 VID DSPI ₁ SIUL	I/O I/O	Slow	Medium	2	\overline{c}
A[1]	PCR[1]	ALT0 ALT1 ALT ₂ ALT ₃	GPIO[1] D[1] SOUT D[10] EIRQ[1]	SIUL SAI0 DSPI1 VID SIUL	I/O I/O O	Slow	Medium	3	4
A[2]	PCR[2]	ALT ₀ ALT1 ALT ₂ ALT ₃	GPIO[2] D[2] SCK D[0] D[9] ETC[5] EIRQ[2]	SIUL SAI0 DSPI1 SAI1 VID ETIMER0 SIUL	I/O I/O I/O I/O	Slow	Medium	4	6
A[3]	PCR[3]	ALT ₀ ALT1 ALT ₂ ALT ₃	GPIO[3] D[3] D[0] D[8] SIN EIRQ[3]	SIUL SAI0 SAI ₂ VID DSPI ₂ SIUL	I/O I/O I/O	Slow	Medium	5	8
A[4]	PCR[4]	ALT0 ALT1 ALT ₂ ALT3	GPIO[4] SYNC SOUT D[7] ETC[3] EIRQ[4]	SIUL SAI0 DSPI ₂ VID ETIMER0 SIUL	I/O I/O O \mathbf{I}	Slow	Medium	8	15
A[5]	PCR[5]	ALT0 ALT1 ALT ₂ ALT ₃	GPIO[5] SYNC SCK D[0] CLK ETC[4] EIRQ[5]	SIUL SAI1 DSPI2 SAI1 VID ETIMER0 SIUL	I/O I/O I/O I/O	Medium	Fast	9	16

Table 4. Pin muxing

Table 4. Pin muxing (continued)

¹ ALT0 is the primary (default) function for each port after reset.

- ² Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIU module. PCR.PA = 00 \rightarrow ALT0; PCR.PA = $01 \rightarrow$ ALT1; PCR.PA = $10 \rightarrow$ ALT2; PCR.PA = $11 \rightarrow$ ALT3. This is intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to '1', regardless of the values selected in the PCR.PA bitfields. For this reason, the value corresponding to an input only function is reported as "-".
- ³ Module included on the MCU.
- 4 Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
- ⁵ Programmable via the SRC (Slew Rate Control) bits in the respective Pad Configuration Register.
- ⁶ Additional board pull resistors are recommended when JTAG pins are not being used on the board or application.
- 7 The 100-pin package is not a production package. It is used for software development only.
- ⁸ Do not use ALT multiplexing when ADC channels are used.

3.1 Introduction

This section contains electrical characteristics of the device as well as temperature and power considerations.

This product contains devices to protect the inputs against damage due to high static voltages. However, it is advisable to take precautions to avoid application of any voltage higher than the specified maximum rated voltages.

To enhance reliability, unused inputs can be driven to an appropriate logic voltage level $(V_{DD}$ or $V_{SS})$. This can be done by the internal pull-up or pull-down, which is provided by the product for most general purpose pins.

The parameters listed in the following tables represent the characteristics of the device and its demands on the system.

In the tables where the device logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics is included in the Symbol column.

In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol "SR" for System Requirement is included in the Symbol column.

CAUTION

All of the following figures are indicative and must be confirmed during either silicon validation, silicon characterization or silicon reliability trial.

3.2 Parameter classification

The electrical parameters shown in this supplement are guaranteed by various methods. To give the customer a better understanding, the classifications listed in [Table 5](#page-20-3) are used and the parameters are tagged accordingly in the tables where appropriate.

Table 5. Parameter classifications

NOTE

The classification is shown in the column labeled "C" in the parameter tables where appropriate.

3.3 Absolute maximum ratings

Table 6. Absolute Maximum Ratings¹

Symbol		Parameter	Conditions	Min	Max ²	Unit	
V_{SS}		SR Device ground		V_{SS}	V_{SS}	v	
V _{DD_HV_IO}		SR 3.3 V Input/Output Supply Voltage (supply). Code Flash supply with V _{DD HV IO3} and Data Flash with V _{DD_HV_IO2}		V_{SS} = 0.3	$V_{SS} + 6.0$	V	
$V_{SS_HV_1O}$		SR 3.3 VInput/Output Supply Voltage (ground). Code Flash ground with V _{SS HV IO3} and Data Flash with V _{SS HV IO2}		V_{SS} = 0.1	$V_{SS} + 0.1$	v	
V _{DD_HV_OSC}		SR 3.3 V Crystal Oscillator Amplifier Supply voltage (supply)	The oscillator and flash supply segments are double-bounded with the V _{DD HV IO} segments. See				
$V_{SS_HV_OSC}$		SR 3.3 V Crystal Oscillator Amplifier Supply voltage (ground)	V _{DD HV IO} and V _{SS HV IO} specifications.				
$V_{DD_HV_{ADC0}^3}$		SR 3.3 V ADC_0 Supply and High Reference voltage		V_{SS} = 0.3	V_{SS} + 6.0	V	
V _{SS_HV_ADC0}		SR 3.3 V ADC_0 Ground and Low Reference voltage		V_{SS} = 0.1	V_{SS} + 0.1	V	
V _{DD_HV_REG}		SR 3.3 V Voltage Regulator Supply voltage		V_{SS} = 0.3	V_{SS} + 6.0	v	
TV _{DD}		SR Slope characteristics on all VDD during power up ⁴			0.1	V/us	
V _{DD_LV_COR}		SR 1.2 V supply pins for core logic (supply)		V_{SS} = 0.3	V_{SS} + 1.4	V	
$V_{SS_LV_COR}$		SR 1.2 V supply pins for core logic (ground)		V_{SS} $=$ 0.1	$V_{SS} + 0.1$	v	
V_{IN}		SR Voltage on any pin with respect to ground (V _{SS HV IO})		$V_{SS_HVIO} = 0.3$	$V_{DD_HV_IO}$ +0.5	V	
INJPAD		SR Input current on any pin during overload condition		-10	10	mA	
INJSUM		SR Absolute sum of all input currents during overload condition		-50	50	mA	
TSTORAGE		SR Storage temperature		-55	150	$^{\circ}C$	
$T_{\rm J}$		SR Junction temperature under bias		-40	150	$^{\circ}C$	
T_A		SR Ambient temperature under bias	f_{CPU} <64 MHz	-40	125	$^{\circ}C$	
			f_{CPU} <64 MHz Video use case with internal supply	-40	105	$^{\circ}C$	

1 Functional operating conditions are given in the DC electrical characteristics. Absolute maximum ratings are stress ratings only, and functional operation at the maxima is not guaranteed. Stress beyond the listed maxima may affect device reliability or cause permanent damage to the device.

- ² Absolute maximum voltages are currently maximum burn-in voltages. Absolute maximum specifications for device stress have not yet been determined.
- ³ MPC5604E's I/O, flash, and oscillator circuit supplies are interconnected. The ADC supply managed independently from other supplies.
- ⁴ Guaranteed by device validation.

3.4 Recommended operating conditions

Table 7. Recommended operating conditions

 $¹$ Full functionality cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC electrical characteristics</sup> and I/Os DC electrical specification may not be guaranteed.

² MPC5604E's I/O, flash, and oscillator circuit supplies are interconnected. The ADC supply managed independently from other supplies.

3.5 Thermal characteristics

Symbol	Parameter	Conditions	Typical value	Unit
R_{θ JA	Thermal resistance junction-to-ambient,	Single layer board-1s	51	\degree C/W
	natural convection ²	Four layer board-2s2p	38	\degree C/W
$R_{\theta JMA}$	Thermal resistance junction-to-ambient ²	@ 200 ft./min. ³ , single layer board-1s	41	\degree C/W
		@ 200 ft./min. ³ , four layer board-2s2p	32	\degree C/W
R_{θ JB	Thermal resistance junction to board ⁴		23	$\rm ^{\circ}$ C/W
$R_{\theta \text{JCtop}}$	Thermal resistance junction to case (top) ⁵		11	$\rm ^{\circ}$ C/W
Ψ_{JT}	Junction to package top natural convection ⁶		2	\degree C/W

Table 8. Thermal characteristics for 100-pin LQFP¹

 1 Thermal characteristics are targets based on simulation that are subject to change per device characterization.

² Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

- 3 Flow rate of forced air flow.
- ⁴ Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.
- ⁵ Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
- ⁶ Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

 $¹$ Thermal characteristics are targets based on simulation that are subject to change per device</sup> characterization.

² Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6. Thermal test board meets JEDEC specification for this package.

- 3 Flow rate of forced air flow.
- ⁴ Junction-to-Board thermal resistance determined per JEDEC JESD51-8. Thermal test board meets JEDEC specification for the specified package.
- ⁵ Junction-to-Case at the top of the package determined using MIL-STD 883 Method 1012.1. The cold plate temperature is used for the case temperature. Reported value includes the thermal resistance of the interface layer.
- 6 Thermal characterization parameter indicating the temperature difference between the package top and the junction temperature per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.

3.5.1 General notes for specifications at maximum junction temperature

An estimation of the chip junction temperature, T_J , can be obtained from [Equation 1](#page-24-1):

$$
T_J = T_A + (R_{\theta JA} * P_D) \qquad \qquad \text{Eqn. 1}
$$

where:

 T_A = ambient temperature for the package (°C) R_{HJA} = junction to ambient thermal resistance (°C/W)

 P_D = power dissipation in the package (W)

The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance. There are two values in common usage: the value determined on a single layer board and the value obtained on a board with two planes. For packages such as the PBGA, these values can be different by a factor of two. Which value is closer to the application depends on the power dissipated by other components on the board. The value obtained on a single layer board is appropriate for the tightly packed printed circuit board. The value obtained on the board with the internal planes is usually appropriate if the board has low power dissipation and the components are well separated.

When a heat sink is used, the thermal resistance is expressed in [Equation 2](#page-24-2) as the sum of a junction to case thermal resistance and a case to ambient thermal resistance:

$$
R_{\theta J A} = R_{\theta J C} + R_{\theta C A}
$$
Eq. 2

where:

 $R_{\theta JA}$ = junction to ambient thermal resistance (°C/W)

 R_{BIC} = junction to case thermal resistance (°C/W)

 R_{ACA} = case to ambient thermal resistance (°C/W)

 R_{BIC} is device related and cannot be influenced by the user. The user controls the thermal environment to change the case to ambient thermal resistance, R_{0CA} . For instance, the user can change the size of the heat sink, the air flow around the device, the interface material, the mounting arrangement on printed circuit board, or change the thermal dissipation on the printed circuit board surrounding the device.

To determine the junction temperature of the device in the application when heat sinks are not used, the Thermal Characterization Parameter (Ψ_{TT}) can be used to determine the junction temperature with a measurement of the temperature at the top center of the package case using [Equation 3](#page-24-3):

$$
T_J = T_T + (\Psi_{JT} \times P_D) \qquad \qquad \text{Eqn. 3}
$$

where:

 T_T = thermocouple temperature on top of the package (°C)

 Ψ_{IT} = thermal characterization parameter (°C/W)

 P_D = power dissipation in the package (W)

MPC5604E Microcontroller Data Sheet, Rev. 4

The thermal characterization parameter is measured per JESD51-2 specification using a 40 gauge type T thermocouple epoxied to the top center of the package case. The thermocouple should be positioned so that the thermocouple junction rests on the package. A small amount of epoxy is placed over the thermocouple junction and over about 1 mm of wire extending from the junction. The thermocouple wire is placed flat against the package case to avoid measurement errors caused by cooling effects of the thermocouple wire.

References:

Semiconductor Equipment and Materials International 3081 Zanker Road San Jose, CA 95134 U.S.A. (408) 943-6900

MIL-SPEC and EIA/JESD (JEDEC) specifications are available from Global Engineering Documents at 800-854-7179 or 303-397-7956.

JEDEC specifications are available on the WEB at http://www.jedec.org.

- 1. C.E. Triplett and B. Joiner, *An Experimental Characterization of a 272 PBGA Within an Automotive Engine Controller Module*, Proceedings of SemiTherm, San Diego, 1998, pp. 47-54.
- 2. G. Kromann, S. Shidore, and S. Addison, *Thermal Modeling of a PBGA for Air-Cooled Applications*, Electronic Packaging and Production, pp. 53-58, March 1998.
- 3. B. Joiner and V. Adams, *Measurement and Simulation of Junction to Board Thermal Resistance and Its Application in Thermal Modeling*, Proceedings of SemiTherm, San Diego, 1999, pp. 212-220.

3.6 Electromagnetic Interference (EMI) characteristics

Table 10. EMI Testing Specifications¹

¹ EMI testing and I/O port waveforms per standard IEC61967-2.

3.7 Electrostatic Discharge (ESD) characteristics

Table 11. ESD ratings1,2

¹ All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integrated Circuits.

 2 A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device specification requirements. Complete DC parametric and functional testing shall be performed per applicable device specification at room temperature followed by hot temperature, unless specified otherwise in the device specification

3.8 Power management electrical characteristics

3.8.1 Power Management Overview

The device supports the following power modes:

- Internal voltage regulation mode
- External voltage regulation mode

3.8.1.1 Internal voltage regulation mode

In this mode, the following supplies are involved:

 $V_{DD-HVIO} (3.3V)$ — This is the main supply provided externally.

 $V_{DD-LV-COR}$ (1.2V) — This is the core logic supply. In the internal regulation mode, the core supply is derived from the main supply via an on-chip linear regulator driving an internal PMOS ballast transistor. The PMOS ballast transistors are located in the pad ring and their source connectors are directly bonded to a dedicated pin. See [Figure 4.](#page-27-1)

Figure 4. Internal Regulation Mode

The core supply can also be provided externally. [Table 12](#page-27-0) shows how to connect $V_{DD-HV-S-BALLAST}$ pin for internal and external core supply mode.

NOTE

V_{DD_HV_S_BALLAST} pin is the supply pin, which carries the entire core logic current in the internal regulation mode, while in external regulation mode it is used as a signal to bypass the regulator.

3.8.1.2 External voltage regulation mode

In the external regulation mode, the core supply is provided externally using a switched regulator. This saves on-chip power consumption by avoiding the voltage drop over the ballast transistor. The external supply mode is selected via a board level supply change at the V_{DDHV} S_BALLAST pin.

Figure 5. External Regulation Mode

3.8.1.3 Recommended power supply sequencing¹

For MPC5604E, the external supplies need to be maintained as per the following relations:

- V_{DDHV} IO should be always greater or equal to V_{DDHV} S Ballast
- V_{DD} HV IO should be always greater than V_{DD} LV_COR0_X
- V_{DD-HV} IO should be always greater than V_{DD-HV} ADC

3.8.2 Voltage regulator electrical characteristics

^{1.}Investigations are in process to relax power supply sequencing recommendation.

Figure 6. Voltage regulator capacitance connection

¹ V_{DD} = 3.3 V \pm 10%, T_A = -40 to 125 °C, unless otherwise specified

 2 It is required by the device in internal voltage regulation mode only.

- ³ This capacitance value is driven by the constraints of the external voltage regulator that supplies the V_{DD} BV voltage. A typical value is in the range of 470 nF. This capacitance should be placed close to the device pin.
- ⁴ This value is acceptable to guarantee operation from 3.0 V to 3.6 V
- ⁵ External regulator and capacitance circuitry must be capable of providing I_{DD-RV} while maintaining supply V_{DD_BV} in operating range.
- 6 In-rush current is seen only for short time during power-up and on standby exit (max 20 µs, depending on external LV capacitances to be load)
- 7 The duration of the in-rush current depends on the capacitance placed on LV pins. BV decaps must be sized accordingly. Refer to IMREG value for minimum amount of current to be provided in cc.

3.8.3 Voltage monitor electrical characteristics

The device implements a POR module to ensure correct power-up initialization, as well as three low voltage detectors to monitor the V_{DD-HV} and the V_{DD-LV} voltage while device is supplied:

- POR monitors V_{DD-HV} during the power-up phase to ensure device is maintained in a safe reset state
- LVDHV3 monitors V_{DD-HV} to ensure device reset below minimum functional supply
- LVDLVCOR monitors low voltage digital power domain

Table 14. Low voltage monitor electrical characteristics

¹ V_{DD-HV} = 3.3V ± 10% T_A = -40 °C to T_{A MAX}, unless otherwise specified

3.9 Power Up/Down reset sequencing

The MPC5604E implements a precise sequence to ensure each module is started only when all conditions for switching it ON are available. This prevents overstress event or miss-functionality within and outside the device:

• A POR module working on voltage regulator supply is controlling the correct start-up of the regulator. This is a key module ensuring safe configuration for all Voltage regulator functionality when supply is below 1.5 V. Associated POR (or POR) signal is active low.

- Several Low Voltage Detectors, working on voltage regulator supply are monitoring the voltage of the critical modules (Voltage regulator, I/Os, Flash and Low voltage domain). LVDs are gated low when POWER_ON is active.
- A POWER OK signal is generated when all critical supplies monitored by the LVD are available. This signal is active high and released to all modules including I/Os, Flash and RC16 oscillator needed during power-up phase and reset phase. When POWER_OK is low the associated module are set into a safe state.

Figure 7. Power-up typical sequence

Figure 8. Power-down typical sequence

MPC5604E Microcontroller Data Sheet, Rev. 4

3.10 DC electrical characteristics

[Table 15](#page-32-1) gives the DC electrical characteristics at 3.3 V (3.0 V < V_{DD} HV IO < 3.6 V).

Table 15. DC electrical characteristics (3.3 V)¹

 1 These specifications are design targets and subject to change per device characterization.

 2 "SR" parameter values must not exceed the absolute maximum ratings shown in [Table 6](#page-21-1).

Table 16. Supply current

 1 All values to be confirmed after characterization/data collection.

² Halt mode configurations: Code fetched from SRAM, Code Flash and Data Flash in low power mode, OSC/PLL0 are OFF, Core clock frozen, all peripherals are disabled.

³ STOP "P" mode DUT configuration: Code fetched from SRAM, Code Flash and Data Flash off, OSC/PLL0 are OFF, Core clock frozen, all peripherals are disabled.

3.11 Main oscillator electrical characteristics

The MPC5604E provides an oscillator/resonator driver.

- 1 The start-up time is dependent upon crystal characteristics, board leakage, etc., high ESR and excessive capacitive loads can cause long start-up time.
- ² Value captured when amplitude reaches 90% of XTAL

Table 18. Input clock characteristics

3.12 FMPLL electrical characteristics

Table 19. PLLMRFM electrical specifications¹ (VDDPLL = 3.0 V to 3.6 V, VSS = VSSPLL = 0 V, TA = T^L to TH)

Table 19. PLLMRFM electrical specifications¹ (VDDPLL = 3.0 V to 3.6 V, VSS = VSSPLL = 0 V, TA = T^L to TH) (continued)

 1 All values given are initial design targets and subject to change.

- ² Considering operation with PLL not bypassed.
- 3 Self clocked mode frequency is the frequency that the PLL operates at when the reference frequency falls outside the f_{LOR} window.
- 4 f_{VCO} self clock range is 20-150 MHz. f_{SCM} represents f_{SYS} after PLL output divider (ERFD) of 2 through 16 in enhanced mode.
- 5 This value is determined by the crystal manufacturer and board design.
- 6 Jitter is the average deviation from the programmed frequency measured over the specified interval at maximum $f_{\rm{SYS}}$. Measurements are made with the device powered by filtered supplies and clocked by a stable external clock signal. Noise injected into the PLL circuitry via V_{DDPLL} and V_{SSPLL} and variation in crystal oscillator frequency increase the C_{JITTER} percentage for a given interval.
- 7 Proper PC board layout procedures must be followed to achieve specifications.
- ⁸ Values are with frequency modulation disabled. If frequency modulation is enabled, jitter is the sum of C_{JITTER} and either f_{CS} or f_{DS} (depending on whether center spread or down spread modulation is enabled).
- 9 This value is determined by the crystal manufacturer and board design. For 4 MHz to 20 MHz crystals specified for this PLL, load capacitors should not exceed these limits.
- ¹⁰ This specification applies to the period required for the PLL to relock after changing the MFD frequency control bits in the synthesizer control register (SYNCR).
- ¹¹ This value is true when operating at frequencies above 60 MHz, otherwise f_{CS} is 2% (above 64 MHz).
- 12 Modulation depth will be attenuated from depth setting when operating at modulation frequencies above 50 kHz.

3.13 16 MHz RC oscillator electrical characteristics

 1 PTF = Post Trimming Frequency: The frequency of the output clock after trimming at typical supply voltage and temperature
3.14 Analog-to-Digital Converter (ADC) electrical characteristics

The device provides a 10-bit Successive Approximation Register (SAR) Analog-to-Digital Converter.

Figure 9. ADC characteristics and error definitions

3.14.1 Input impedance and ADC accuracy

To preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor with good high frequency characteristics at the input pin of the device can be effective: the capacitor should be as large as possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; further, it sources charge during the sampling phase, when the analog signal source is a high-impedance source.

A real filter can typically be obtained by using a series resistance with a capacitor on the input pin (simple RC filter). The RC filtering may be limited according to the value of source impedance of the transducer or circuit supplying the analog signal to

be measured. The filter at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the equivalent input impedance of the ADC itself.

In fact a current sink contributor is represented by the charge sharing effects with the sampling capacitance: C_S being substantially a switched capacitance, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive path to ground. For instance, assuming a conversion rate of 1 MHz, with C_S equal to 3 pF, a resistance of 330 k Ω is obtained (R_{EQ}) $= 1 / (fc \times C_S)$, where fc represents the conversion rate at the considered channel). To minimize the error induced by the voltage partitioning between this resistance (sampled voltage on C_S) and the sum of $R_S + R_F + R_L + R_{SW} + R_{AD}$, the external circuit must be designed to respect the [Equation 4](#page-37-0):

Eqn. 4

$$
V_A \bullet \frac{R_S + R_F + R_L + R_{SW} + R_{AD}}{R_{EQ}} < \frac{1}{2} \text{LSB}
$$

[Equation 4](#page-37-0) generates a constraint for external network design, in particular on resistive path. Internal switch resistances (R_{SW} and R_{AD}) can be neglected with respect to external resistances.

Figure 10. Input equivalent circuit

A second aspect involving the capacitance network shall be considered. Assuming the three capacitances C_F , C_{P1} and C_{P2} are initially charged at the source voltage V_A (refer to the equivalent circuit reported in [Figure 10](#page-37-1)): A charge sharing phenomenon is installed when the sampling phase is started (A/D switch close).

Figure 11. Transient behavior during sampling phase

In particular two different transient periods can be distinguished:

• A first and quick charge transfer from the internal capacitance C_{P1} and C_{P2} to the sampling capacitance C_S occurs (C_S is supposed initially completely discharged): considering a worst case (since the time constant in reality would be faster) in which C_{P2} is reported in parallel to C_{P1} (call C_P = C_{P1} + C_{P2}), the two capacitances C_P and C_S are in series, and the time constant is

$$
\tau_1 = (R_{SW} + R_{AD}) \cdot \frac{C_P \cdot C_S}{C_P + C_S}
$$

[Equation 5](#page-38-0) can again be simplified considering only C_S as an additional worst condition. In reality, the transient is faster, but the A/D converter circuitry has been designed to be robust also in the very worst case: the sampling time T_S is always much longer than the internal time constant:

$$
\tau_1 < (R_{SW} + R_{AD}) \bullet C_S \ll T_S
$$

The charge of C_{P1} and C_{P2} is redistributed also on C_S , determining a new value of the voltage V_{A1} on the capacitance according to [Equation 7:](#page-38-1)

$$
V_{A1} \bullet (C_S + C_{P1} + C_{P2}) = V_A \bullet (C_{P1} + C_{P2})
$$
Eqn. 7

• A second charge transfer involves also C_F (that is typically bigger than the on-chip capacitance) through the resistance R_L : again considering the worst case in which C_{P2} and C_S were in parallel to C_{P1} (since the time constant in reality would be faster), the time constant is:

$$
c_2 < R_L \bullet (C_S + C_{P1} + C_{P2})
$$

MPC5604E Microcontroller Data Sheet, Rev. 4

 $\mathbf 7$

Eqn. 8

Eqn. 5

Eqn. 6

In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before the end of sampling time T_S , a constraints on R_L sizing is obtained:

$$
10 \bullet \tau_2 = 10 \bullet R_L \bullet (C_S + C_{P1} + C_{P2}) < T_S
$$
Eqn. 9

Of course, R_L shall be sized also according to the current limitation constraints, in combination with R_S (source impedance) and R_F (filter resistance). Being C_F definitively bigger than C_{P1} , C_{P2} and C_S , then the final voltage V_{A2} (at the end of the charge transfer transient) will be much higher than V_{A1} . [Equation 10](#page-39-0) must be respected (charge balance assuming now C_S already charged at V_{A1}):

Eqn. 10

$$
V_{A2} \bullet (C_S + C_{P1} + C_{P2} + C_F) = V_A \bullet C_F + V_{A1} \bullet (C_{P1} + C_{P2} + C_S)
$$

The two transients above are not influenced by the voltage source that, due to the presence of the $R_F C_F$ filter, is not able to provide the extra charge to compensate the voltage drop on C_S with respect to the ideal source V_A ; the time constant $R_F C_F$ of the filter is very high with respect to the sampling time (T_S) . The filter is typically designed to act as anti-aliasing.

Figure 12. Spectral representation of input signal

Calling f_0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, f_F), according to the Nyquist theorem the conversion rate f_C must be at least $2f_0$; it means that the constant time of the filter is greater than or at least equal to twice the conversion period (T_C). Again the conversion period T_C is longer than the sampling time T_S, which is just a portion of it, even when fixed channel continuous conversion mode is selected (fastest conversion rate at a specific channel): in conclusion it is evident that the time constant of the filter $R_F C_F$ is definitively much higher than the sampling time T_s , so the charge level on C_s cannot be modified by the analog signal source during the time in which the sampling switch is closed.

The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage drop on C_S ; from the two charge balance equations above, it is simple to derive [Equation 11](#page-40-0) between the ideal and real sampled voltage on C_S :

Eqn. 11

$$
\frac{V_{A}}{V_{A2}} = \frac{C_{P1} + C_{P2} + C_{F}}{C_{P1} + C_{P2} + C_{F} + C_{S}}
$$

From this formula, in the worst case (when V_A is maximum, that is for instance 5 V), assuming to accept a maximum error of half a count, a constraint is evident on C_F value:

 $C_F > 2048 \cdot C_S$

$$
Eqn. 12
$$

3.14.2 ADC conversion characteristics

Table 21. ADC conversion characteristics

Symbol		Parameter	Conditions ¹		Unit		
				Min	Typ	Max	
f_{CK}		SR ADC clock frequency (depends on ADC configuration) (The duty cycle depends on ADCCIk ² frequency)		1		64	MHz
f_S		SR Sampling frequency				1.53	MHz
t_{ADC_S}	D	Sample time ³	$f_{ADC} = 20$ MHz, ADC_conf_sample_input = 17	500			ns
			$f_{ADC} = 9 MHz$, $INPSAMP = 255$			28.2	μs
t_{ADC_C}	P	Conversion time ⁴	$f_{ADC} = 20 MHz^5$, $\overline{ADC}_$ conf $_$ comp = 3	500			ns
C_S^6	D	ADC input sampling capacitance				2.5	pF
C_{P1}^6	D	ADC input pin capacitance 1				0.8^{7}	pF
C_{P2}^6	D	ADC input pin capacitance 2			$\overline{}$	$\mathbf{1}$	pF
R_{SW1}^6	D	Internal resistance of analog source				0.6	kΩ
R_{AD}^6	D	Internal resistance of analog source				2	kΩ
I_{INJ}	T	Input current injection	Current injection on one ADC input, different from the converted one. Remains within TUE specification	-5		5	mA
INL	P	Integral Non Linearity	No overload	-1.5		1.5	LSB
DNL	P	Differential Non Linearity	No overload	-1.0		1.0	LSB
OFS	T	Offset error			±1		LSB
GNE	T	Gain error			±1		LSB
TUE	P	Total unadjusted error without current injection		-3		3	LSB
TUE	T	Total unadjusted error with current injection		-3		3	LSB
TUE	P	Total unadjusted error		-3		3	LSB
TUEP	CC	Total Unadjusted Error for	No overload	-2	$\overline{}$	\overline{c}	LSB
		precise channels, input only pins	overload conditions on adjacent channel				LSB
TUEX	CC	Total Unadjusted Error for	No overload	-3		3	LSB
		extended channel,	overload conditions on adjacent channel				LSB

- ¹ V_{DD} = 3.3 V to 3.6 V, T_A = –40 to +125 °C, unless otherwise specified and analog input voltage from V_{AGND} to V_{AREF}.
- ² ADCClk clock is always half of the ADC module input clock defined via the auxiliary clock divider for the ADC.
- ³ During the sample time the input capacitance CS can be charged/discharged by the external source. The internal resistance of the analog source must allow the capacitance to reach its final voltage level within t_{ADC} s. After the end of the sample time t_{ADC_S} , changes of the analog input voltage have no effect on the conversion result. Values for the sample clock t_{ADC} s depend on programming.
- 4 This parameter does not include the sample time t_{ADC} s, but only the time for determining the digital result and the time to load the result register with the conversion result.
- ⁵ 20 MHz ADC clock. Specific prescaler is programmed on MC_PLL_CLK to provide 20 MHz clock to the ADC.
- ⁶ See [Figure 10](#page-37-1).
- 7 Does not include packaging and bonding capacitances

3.15 Temperature sensor electrical characteristics

Symbol		С	Parameter	Conditions		Unit		
					min	typical	max	
	CC.	C	Temperature monitoring range		-40		150	$^{\circ}$ C
	_{CC}	С	Sensitivity			5.14		mV ^o C
	{CC}	C	Accuracy	$T{\rm J} = -40$ to 25 °C	-10		10	$^{\circ}C$
	CC	C		$T_J = -25$ to 125 °C	-10		10	$^{\circ}C$

Table 22. Temperature sensor electrical characteristics

3.16 Flash memory electrical characteristics

Table 23. Code flash program and erase specifications¹

Symbol	Parameter	Min Value	Typical Value ² (0 Cycles)	Initial Max ³ (100) Cycles)	Max ⁴ (100000) Cycles)	Unit
$\mathsf{T}_{\mathsf{EABT}}$	Erase Suspend Latency			30	30	μS
$\mathsf{T}_{\mathsf{EABT}}$	Erase Suspend Request Rate	10				ms
NER	Endurance (8KB, 16KB sectors) Endurance (32KB, 64KB sectors) Endurance (128KB sectors)	100 10				Kcycles
T_{DR}	Data Retention at 1K cycles Data Retention at 10K cycles Data Retention at 100K cycles	20 10 5				Years

Table 23. Code flash program and erase specifications¹

 1 TBC = To be confirmed

 2 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

 3 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.

⁴ The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.

⁵ Actual hardware programming times. This does not include software overhead.

 6 Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).

 1 TBC = To be confirmed

 2 Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to change pending device characterization.

- 3 Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
- ⁴ The maximum program & erase times occur after the specified number of program/erase cycles. These maximum values are characterized but not guaranteed.
- ⁵ Actual hardware programming times. This does not include software overhead.

 $\frac{1}{1}$ VDD_HV = 3.3 V ± 10%, TA = -40 to 125 °C, unless otherwise specified

 6 Typical Bank programming time assumes that all cells are programmed in a single pulse. In reality some cells will require more than one pulse, adding a small overhead to total bank programming time (see Initial Max column).

Symbol	C	Parameter	Conditions ¹	Max	Unit
Fmax	C.	Maximum working frequency for Code Flash at	2 wait states	66	MHz
		given number of WS in worst conditions	0 wait states	18	
Fmax		Maximum working frequency for Data Flash at given number of WS in worst conditions	8 wait states	66	MHz

Table 25. Flash read access timing

3.17 AC specifications

3.17.1 Pad AC specifications

[Table 26](#page-45-0) gives the AC electrical characteristics at 3.3 V (3.0 V < V_{DD_HV_IO} < 3.6 V) operation.

Table 26. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1)

Pad	Symbol	Parameter	Load drive	Rise/Fall ¹ (n _s)			Unit
			(pF)	Min	Typ	Max	
Medium	Tswitchon	Propagation delay from	25	1		15	ns
		vdd/2 of internal signal to Pchannel / Nchannel	50	1		15	ns
		switch on condition	100	$\mathbf{1}$		15	ns
			200	$\mathbf{1}$		15	ns
	tr/tf	Slope at rising/falling	25	\overline{c}		12	ns
		edge	50	$\overline{\mathbf{4}}$	$\overline{}$	25	ns
			100	8		40	ns
			200	14		70	ns
	Freq	Frequency	25			40	MHz
		of Operation	50			20	MHz
			100			13	MHz
			200	$\overline{}$	$\overline{}$	$\overline{7}$	MHz
	Current	Slew rate at rising edge of current	25	2.5	$\overline{}$	$\overline{7}$	mA/ns
	Slew		50	2.5		$\overline{7}$	mA/ns
			100	2.5		$\overline{7}$	mA/ns
			200	2.5		$\overline{7}$	mA/ns
Fast	Tswitchon	Propagation delay from vdd/2 of internal signal to Pchannel / Nchannel switch on condition	25	$\mathbf{1}$		6	ns
			50	1	$\overline{}$	$\,6\,$	ns
			100	$\mathbf{1}$		6	ns
			200	1	$\overline{}$	6	ns
	tr/tf	Slope at rising/falling	25	$\mathbf{1}$		$\overline{\mathbf{4}}$	ns
		edge	50	1.5		$\overline{7}$	ns
			100	3		12	ns
			200	5		18	ns
	Freq	Frequency	25			72	MHz
		of Operation	50	$\overline{}$		55	MHz
			100			40	MHz
			200			25	MHz
	Current	Slew rate at rising edge	25	3	$\overline{}$	40	mA/ns
	Slew	of current	50	3		40	mA/ns
			100	3	$\overline{}$	40	mA/ns
			200	3		40	mA/ns

Table 26. Pad AC specifications (3.3 V, INVUSRO[PAD3V5V] = 1)

¹ Slope at rising/falling edge

Figure 13. Pad output delay

3.18 AC timing characteristics

3.18.1 Generic timing diagrams

The generic timing diagrams in [Figure 14](#page-48-0) and [Figure 15](#page-48-1) apply to all I/O pins with pad types fast, slow and medium. See [Section 2.2, "Signal descriptions](#page-7-0) for the pad type for each pin.

Figure 14. Generic output delay/hold timing

3.18.2 RESET pin characteristics

The MPC5604E implements a dedicated bidirectional RESET pin.

Table 27. RESET electrical characteristics

 $1 \text{ V}_{DD} = 3.3 \text{ V} \pm 10\% / 5.0 \text{ V} \pm 10\%$, $T_A = -40 \text{ to } 125 \text{ °C}$, unless otherwise specified

² All values need to be confirmed during device validation.

 3 C_L includes device and package capacitance (C_{PKG} < 5 pF).

3.18.3 Nexus and JTAG timing

Table 28. Nexus debug port timing¹

 1 All Nexus timing relative to MCKO is measured from 50% of MCKO and 50% of the respective signal.

² MDO, $\overline{\text{MSEO}}$, and $\overline{\text{EVTO}}$ data is held valid until next MCKO low cycle.

Figure 18. Nexus output timing

Figure 19. Nexus event trigger and test clock timings

Figure 20. Nexus TDI, TMS, TDO Timing

3.18.4 GPIO timing

The GPIO specifications for setup time and output valid relative to CLKOUT are the same for all pins on the device regardless of the primary pin function.

3.18.5 External interrupt timing (IRQ pin)

Table 30. External interrupt timing¹

No.		C Symbol Parameter		Conditions	Min	Max Unit	
	^I IPWL	CC		IRQ pulse width low		4	LCYC
2	UPWH	CC		IRQ pulse width high		4	CYC
3	^I ICYC	CC.		IRQ edge to edge time ²		$4 + N^3$	CYC

¹ IRQ timing specified at f_{SYS} = 64 MHz and V_{DD_HV_IOx} = 3.0 V, T_A = T_L to T_H, and CL = 200 pF with SRC = 0b00.

² Applies when IRQ pins are configured for rising edge or falling edge events, but not both.

 3 N = ISR time to clear the flag

Figure 21. External interrupt timing

3.18.6 FlexCAN timing

Table 31. FlexCAN timing¹

Num	Characteristic	Symbol	Min. Value Max. Value	Unit
	CTNX Output Valid after CLKOUT Rising Edge (Output Delay)	^t CANOV	26.0	ns
	CNRX Input Valid to CLKOUT Rising Edge (Setup Time)	^L CANSU	9.8	ns

¹ FlexCAN timing specified at f_{SYS} = 64 MHz, VDD = 1.35 V to 1.65 V, VDDEH = 3.0 V to 5.5 V, VRC33 and VDDPLL = 3.0 V to 3.6 V, T_A = TL to TH, and CL = 50 pF with SRC = 0b00.

3.18.7 LINFlex timing

Minimum design target for interface frequency is 2 MBit/s.

3.18.8 DSPI timing

Table 32. DSPI timing

¹ This mode is not feasible at 32 MHz.

Figure 22. DSPI classic SPI timing — Master, CPHA = 0

Figure 24. DSPI classic SPI timing — Slave, CPHA = 0

Figure 26. DSPI modified transfer format timing — Master, CPHA = 0

Figure 27. DSPI modified transfer format timing — Master, CPHA = 1

Figure 28. DSPI modified transfer format timing — Slave, CPHA = 0

Figure 30. DSPI PCS Strobe (PCSS) timing

3.18.9 Video interface timing

[Table 33](#page-59-0) details the MPC5604E's video encoder block's pixel input clocking requirement.

Table 33. Input pixel clock characteristics

Figure 31. Video interface timing

3.18.10 Fast ethernet interface

MII signals use CMOS signal levels compatible with devices operating at either 5.0 V or 3.3 V. Signals are not TTL compatible. They follow the CMOS electrical characteristics.

3.18.10.1 MII receive signal timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)

The receiver functions correctly up to a RX CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency.

Table 34. MII receive signal timing

Figure 32. MII receive signal timing diagram

3.18.10.2 MII transmit signal timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)

The transmitter functions correctly up to a TX CLK maximum frequency of 25 MHz +1%. There is no minimum frequency requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency.

The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the rising or falling edge of TX CLK, and the timing is the same in either case. This options allows the use of non-compliant MII PHYs.

Refer to the Ethernet chapter for details of this option and how to enable it.

 1 Output pads configured with SRC = 0b11.

Figure 33. MII transmit signal timing diagram

3.18.10.3 MII async inputs signal timing (CRS and COL)

Table 36. MII async inputs signal timing¹

¹ Output pads configured with $SRC = 0b11$.

Figure 34. MII async inputs timing diagram

3.18.10.4 MII serial management channel timing (MDIO and MDC)

The FEC functions correctly with a maximum MDC frequency of 5 MHz.

Table 37. MII serial management channel timing (MDIO and MDC)

No.	Parameter	Min	Max	Unit
	MDIO Input delay setup	28		ns
\mathcal{P}	MDIO Input delay hold	0		ns
3	MDIO Output delay valid		25	ns
4	MDIO Output delay Invalid	0		ns
5	MDC clock period	100		ns
6	MDC Duty Cycle	40	60	%

3.18.11 I2C timing

Table 38. I2C SCL and SDA input timing specifications

¹ Inter Peripheral Clock is the clock at which the I^2C peripheral is working in the device. It is equal to the system clock (Sys_clk).

Table 35. I2C SCL and SDA output timing specifications

 $\frac{1}{1}$ Programming IBFD ($\frac{12}{3}$ bus Frequency Divider) with the maximum frequency results in the minimum output timings listed. The I²C interface is designed to scale the data transition time, moving it to the middle of the SCL low period. The actual position is affected by the prescale and division values programmed in IFDR.

² Inter Peripheral Clock is the clock at which the I^2C peripheral is working in the device.

³ Because SCL and SDA are open-drain-type outputs, which the processor can only actively drive low, the time SCL or SDA takes to reach a high level depends on external signal capacitance and pull-up resistor values.

Electrical characteristics

Figure 36. I2C input/output timing

3.18.12 SAI timing

All timing requirements are specified relative to the clock period or to the minimum allowed clock period of a device.

Table 39. Master Mode SAI Timing

Figure 37. SAI timing master modes

Figure 38. SAI timing slave modes

4.1 100 LQFP mechanical outline drawing

Figure 39. 100 LQFP package mechanical drawing (part 1)

Figure 40. 100 LQFP package mechanical drawing (part 2)

Figure 41. 100 LQFP package mechanical drawing (part 3)

4.2 64 LQFP mechanical outline drawing

Figure 42. 64 LQFP package mechanical drawing (part 1)

Figure 43. 64LQFP package mechanical drawing (part 2)

Figure 44. 64LQFP package mechanical drawing (part 3)

MPC5604E Microcontroller Data Sheet, Rev. 4

5 Document revision history

Table 41. Revision history

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 +1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. **Headquarters** ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 10 5879 8000 support.asia@freescale.com

For Literature Requests Only: Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or 303-675-2140 Fax: 303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com

Document Number: MPC5604E Rev. 4 Jan 2012

Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

RoHS-compliant and/or Pb-free versions of Freescale products have the functionality and electrical characteristics as their non-RoHS-compliant and/or non-Pb-free counterparts. For further information, see<http://www.freescale.com> or contact your Freescale sales representative.

For information on Freescale's Environmental Products program, go to <http://www.freescale.com/epp>.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc. All other product or service names are the property of their respective owners. The Power Architecture and Power.org word marks and the Power and Power.org logos and related marks are trademarks and service marks licensed by Power.org © Freescale Semiconductor, Inc. 2012. All rights reserved.

