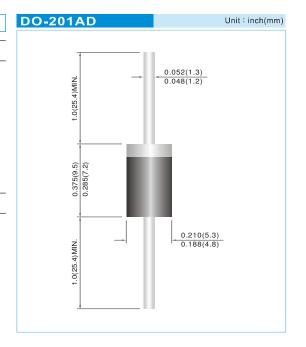


SCHOTTKY BARRIER RECTIFIERS

VOLTAGE 20 to 60 Volts CUR

CURRENT


3.0 Amperes

FEATURES

- Plastic package has Underwriters Laboratory
 Flammability Classification 94V-O utilizing
 Flame Retardant Epoxy Molding Compound
- Exceeds environmental standards of MIL-S-19500/228
- For use in low voltage, high frequency inverters, free wheeling, and polarity protection applications
- Lead free in comply with EU RoHS 2002/95/EC directives

MECHANICAL DATA

- Case: DO-201AD Molded plastic
- Terminals: Axial leads, solderable per MIL-STD-750, Method 2026
- Polarity: Color band denotes cathode
- Mounting Position: Any
- Weight: 0.0395 ounces, 1.122 grams

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified. Single phase, half wave, 60 Hz, resistive or inductive load.

SYMBOL	SB320	SB330	SB340	SB350	SB360	UNITS
V _{RRM}	20	30	40	50	60	٧
V _{RMS}	14	21	28	35	42	٧
V _{DC}	20	30	40	50	60	٧
I _{F(AV)}	3.0					А
I _{FSM}	80					Α
V _F	0.5			0.75		٧
I _R	0.2 30			0.1 30		mA
$egin{array}{c} {\sf R}_{_{ heta{\sf JC}}} \ {\sf R}_{_{ heta{\sf JL}}} \end{array}$	50 12 15			°C / W		
T_J, T_{STG}	-55 to +125 -55 to +150			50	°C	
	$\begin{array}{c} V_{RRM} \\ V_{RMS} \\ \end{array}$ $\begin{array}{c} V_{DC} \\ \\ I_{F(AV)} \\ \end{array}$ $\begin{array}{c} I_{FSM} \\ \\ V_{F} \\ \end{array}$ $\begin{array}{c} I_{R} \\ \\ R_{\theta JA} \\ R_{\theta JC} \\ R_{\theta JL} \\ \end{array}$	V _{RRM} 20 V _{RMS} 14 V _{DC} 20 I _{F(AV)} I _{FSM} V _F I _R R _{0JC} R _{0JL}	V _{RRM} 20 30 V _{RMS} 14 21 V _{DC} 20 30 I _{F(AV)} I _{FSM} V _F 0.5 I _R 30 R _{eJA} R _{eJC} R _{eJL} R _{eJL}	V _{RRM} 20 30 40 V _{RMS} 14 21 28 V _{DC} 20 30 40 I _{F(AV)} 3.0 I _{FSM} 80 V _F 0.5 I _R 0.2 30 30 R _{0JA} R _{0JC} R _{0JL} 50 R _{0JC} R _{0JL} 12 15	V _{RRM} 20 30 40 50 V _{RMS} 14 21 28 35 V _{DC} 20 30 40 50 I _{F(AV)} 3.0 I _{FSM} 80 V _F 0.5 0. I _R 0.2 0.3 R _{0JA} R _{0JC} R _{0JL} 50 12 15 12 15	VRHM 20 30 40 50 60 VRMS 14 21 28 35 42 VDC 20 30 40 50 60 IFEM 80 VF 0.5 0.75 IR 0.2 0.1 30 ROW 0.2 0.1 30 ROW 12 12 12 ROW 15 15 15

Notes

- 1. Measured at ambient temperature at a distance of 9.5mm from the case
- 2. Minimum Pad Area
- 3. Pulse test: 300 µs pulse width, 1% duty cycle

RATING AND CHARACTERISTIC CURVES

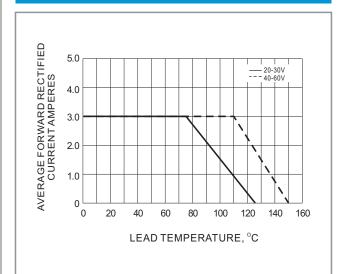


Fig.1- FORWARD CURRENT DERATING CURVE

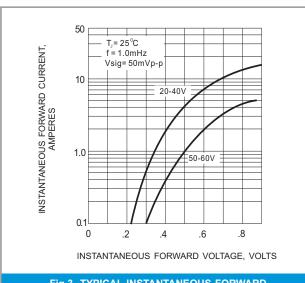


Fig.3- TYPICAL INSTANTANEOUS FORWARD CHARACTERISTICS

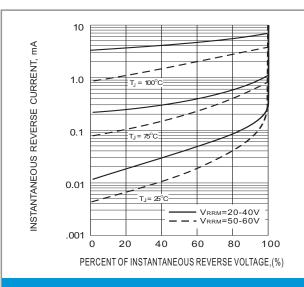


Fig.2- TYPICAL REVERSE CHARACTERISTICS

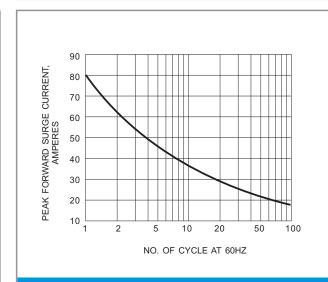


Fig.4- MAXIMUM NON - REPETITIVE SURGE CURRENT

Part No_packing code_Version

SB320_AY_00001

SB320_AY_10001


SB320_B0_00001

SB320_B0_10001

SB320_R2_00001

SB320_R2_10001

For example:

Packing Code XX				Version Code XXXXX				
Packing type	1 st Code	Packing size code	2 nd Code	HF or RoHS	1 st Code	2 nd ~5 th Code		
Tape and Ammunition Box (T/B)	Α	N/A	0	HF	0	serial number		
Tape and Reel (T/R)	R	7"	1	RoHS	1	serial number		
Bulk Packing (B/P)	В	13"	2					
Tube Packing (T/P)	Т	26mm	X					
Tape and Reel (Right Oriented) (TRR)	S	52mm	Y					
Tape and Reel (Left Oriented) (TRL)	L	PANASERT T/B CATHODE UP (PBCU)	U					
FORMING	F	PANASERT T/B CATHODE DOWN (PBCD)	D					

Disclaimer

- Reproducing and modifying information of the document is prohibited without permission from Panjit International Inc..
- Panjit International Inc. reserves the rights to make changes of the content herein the document anytime without notification. Please refer to our website for the latest document.
- Panjit International Inc. disclaims any and all liability arising out of the application or use of any product including damages incidentally and consequentially occurred.
- Panjit International Inc. does not assume any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.
- Applications shown on the herein document are examples of standard use and operation. Customers are responsible in comprehending the suitable use in particular applications. Panjit International Inc. makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
- The products shown herein are not designed and authorized for equipments requiring high level of reliability or relating to human life and for any applications concerning life-saving or life-sustaining, such as medical instruments, transportation equipment, aerospace machinery et cetera. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Panjit International Inc. for any damages resulting from such improper use or sale.