Features

- **Power Management**
	- **Supply Input from USB or 1x Disposal Battery (Alkaline, NimH, NiCd)**
	- **Input Voltage Range: 0.9V to 1.8V**
	- **2.7V/2.9V/3.1V/3.3V 100 mA Step-Up DC/DC Converter for Main Supply**
	- **2.7V to 3.5V (100mV step) 150 mA LDO from USB supply**
	- **2.4V to 3.0V (200mV step) 60 mA LDO for Analog Supply**
	- **Reset Generator**
	- **SPI Interface and Internal Programming Registers**
	- **Dynamic Power Management**
	- **Very Low Quiescent Current Operation**
- **Stereo Audio DAC**
	- **Programmable Stereo Audio DAC (16-bits, 18-bits or 20-bits)**
	- **93 dB SNR Playback Stereo Channels**
	- **32 Ohm/20 mW Stereo Headset Drivers with Master Volume and Mute Controls**
	- **Stereo Line Level Input with Volume Control/Mute and Playback through the Headset Driver**
	- **Microphone Preamplifier**
	- **Stereo, Mono and Reverse Stereo Mixer**
	- **Left/Right Speaker Short-Circuit Detection Flag**
	- **8, 11.024, 16, 22.05, 24, 32, 44.1 and 48 kHz Sampling Rates**
	- **256x or 384xFs Master Clock Frequency**
	- **I2S Serial Audio Interface**
	- **Low Power Operation**
- **Applications:**
	- **Ideally Suited to Interface with Atmel's AT8xC51SNDxC MP3 Microcontroller**
	- **Portable Music Players, Digital Cameras, CD Players, Handheld GPS**

1. Description

The AT73C209 is a fully integrated, low cost, combined Stereo Audio DAC and Power Management Circuit targeted for battery powered devices such as MP3 players in "walkman" format or "mass storage" USB format.

The stereo DAC section is a complete high performance, stereo audio digital-to-analog converter delivering a 93 dB dynamic range. It comprises a multibit sigma-delta modulator with dither, continuous time analog filters and analog output drive circuitry. This architecture provides a high insensitivity to clock jitter. The digital interpolation filter increases the sample rate by a factor of 8, using 3 linear phase half-band cascaded filters, followed by a first order SINC interpolator with a sample-rate factor of 8. This filter eliminates the images of baseband audio, retaining only the image at 64x the input sample rate, which is eliminated by the analog post filter. Optionally, a dither signal can be added that reduces possible noise tones at the output. However, the use of a multibit sigma-delta modulator provides extremely low noise tone energy.

Master clock is 256 or 384 times the input data rate, allowing multiple choice of input data rate up to 48 kHz, including standard audio rates of 48, 44.1, 32, 16 and 8 kHz.

The DAC section also comprises volume and mute control and can be simultaneously played back directly on the line outputs and through a 32-Ohms stereo headset.

Power Management and Analog Companions (PMAAC)

AT73C209 Audio and Power Management

The 32-Ohms pair of stereo-headset drivers also includes a LINEL and LINER channel-mixer pair of stereo inputs.

Every DAC can be powered down separately via internal register control. Each single left or right DAC can be directed in MONO mode to the stereo headset and line outputs while the other is set in off mode.

In addition, a microphone preamplifier with a microphone bias switch is integrated, reducing external ICs and saving board space.

The volume, mute, power down, de-emphasis controls and 16-bit, 18-bit and 20-bit audio formats are digitally programmable via a 4-wire SPI bus and the digital audio data is provided through a multi-format I2S interface.

The Power Management section can tolerate several types of input supply, such as:

- Battery: voltage is converted to 3.3V via a DC/DC step up converter using 1 external inductor, 1 schottky diode and a capacitor.
	- Disposable AA or AAA size
	- coin cell size, 1 cell, as low as 0.9V for alkaline
- USB: 5V VBUS supply from a USB connector or a Lithium-Ion battery

The Power Management section also includes a set of low dropout (LDO) voltage regulators with different voltages to supply specific chip and analog requirements:

- LDO1 is designed to drive up to 150 mA from a USB port with 9-step programmable output voltages: 2.7V, 2.8V, 2.9V, 3.0V, 3.1V, 3.2V, 3.3V, 3.4V, 3.5V. Default voltage is 3.4V and represents the initial output voltage of LDO1 at start up. When RSTB is activated, the external MCU can change the output voltage via the SPI serial interface. This LDO is designed to supply the complete chip when the device is connected to a USB port.
- LDO2 is designed to drive up to 60 mA from LDO1 with 4-step programmable output voltages: 2.4V, 2.6V, 2.8V, 3.0V with low noise and high PSRR. Default voltage is 3.0V and represents the initial output voltage of LDO2 at start up. When RSTB is activated, the MCU can change the output voltage via the SPI serial interface. This LDO is designed to supply the internal analog section.

2. Block Diagram

3. Application Diagram

AT73C209

 4

4. Components List

Table 4-1. Components List

Reference	Value	Techno	Size	Manufacturer & Reference
C1	$22 \mu F$	Tantalum	Case A	(AVX) or equivalent
C ₂	$2.2 \mu F / 10V$	Ceramic	0603	C1608X5R1A225MT (TDK) or GRM188R61A225 (Murata)
C ₃	470 nF / 10V	Ceramic	0402	C1005X5R1A474KT (TDK) or GRM155F51A474 (Murata)
C ₄	470 nF / 10V	Ceramic	0402	C1005X5R1A474KT (TDK) or GRM155F51A474 (Murata)
C ₅	100 µF / 6.3V	Ceramic	1210	C3225X5R0J107MT (TDK) or GRM32ER60J107 (Murata)
C ₆	100 µF / 6.3V	Ceramic	1210	C3225X5R0J107MT (TDK) or GRM32ER60J107 (Murata)
C7	$1 \mu F / 6.3 V$	Ceramic	0402	C1005X5R0J105KT (TDK) or GRM155R60J105 (Murata)
C ₈	100 nF / 16V	Ceramic	0402	C1005X5R1C104KT (TDK) or GRM155F51C104 (Murata)
C ₉	$1 \mu F / 6.3 V$	Ceramic	0402	C1005X5R0J105KT (TDK) or GRM155R60J105 (Murata)
C10	10 µF / 6.3V	Ceramic	0402	C1608X5R0J106MT (TDK) or GRM188R60G106 (Murata)
C11	$1 \mu F / 6.3 V$	Ceramic	0402	C1005X5R0J105KT (TDK) or GRM155R60J105 (Murata)
C12	10 µF / 6.3V	Ceramic	0603	C1608X5R0J106MT (TDK) or GRM188R60G106 (Murata)
C13	$1 \mu F / 6.3 V$	Ceramic	0402	C1005X5R0J105KT (TDK) or GRM155R60J105 (Murata)
C14	22 µF / 4V	Ceramic	0805	C2012X5R0J226MT (TDK) or GRM21BR60J226 (Murata)
D ₁		Schottky		MBRA120LT3 (ON Semiconductors) or equivalent
L1	10 µH /550mA		1812	NLC453232T-100K-PF (TDK) or LQH43CN100K03 (Murata)
R1	0.1 Ohms	1%	--	in 0805 Case or can be made by PCB tracks
R ₂	2.2 kOhms	5%	0402	
SW ₁	Push Button	N/A	N/A	Series DSTMxx (APEM COMPONENTS) or equivalent

 \blacksquare

5. Pin Description

Table 5-1. Pin Description

Pin Name	I/O	Pin	Type	Function	Value
SPI_DIN	T	1	Digital	SPI Data Input	0 - VANA
SPI_DOUT	\circ	\overline{c}	Digital	SPI Data Output	0 - VANA
SPI_CLK	T	3	Digital	SPI Clock	0 - VANA
SPI_CSB	T	4	Digital	SPI Chip Select	0 - VANA
ITB	\circ	5	Digital	Open Drain Interruption / Test Analog Signal Output	0 to VANA
MICB	\circ	6	Analog	Microphone Bias	
MICINN	ı	7	Analog	Microphone Amplifier Input	Half VANA
MICOUT	\circ	8	Analog	Microphone Amplifier Output	0 to VANA
VREF	\circ	9	Analog	Voltage Reference Pin For Audio Part	
HSL	O	10	Analog	Line-out/Headphone Left channel output	0 - AVDDHS
HSR	\circ	11	Analog	Line-out/Headphone Right channel output	0 - AVDDHS
AVDDHS	ı	12	Supply	Headset Amplifier Supply	VANA
AGNDHS	Ground	13	Ground	Headset Amplifier Ground	--
LINEL	ı	14	Analog	Line-in, Left channel input	--
LINER	T	15	Analog	Line-in, Right channel input	
INGND	\circ	16	Analog	Line-in, virtual signal ground pin for decoupling.	$-$
VCM	O	17	Analog	Common Mode Reference	Half VANA
SDIN	ı	18	Digital	Serial Data Input For Audio Interface	0 - VANA
BCLK	ı	19	Digital	Bit Clock Input For Audio Interface	0 - VANA
MCLK	I	20	Digital	Master Clock Input For Audio Interface	0 - VANA
LRFS	T	21	Digital	Audio interface left/right channel synchronization frame pulse	0 - VANA
RSTB	\circ	22	Digital	Reset Active Low Power	0 - VBOOST
GNDSW1	Ground	23	Ground	SW1 Ground	
GNDSW1S	I	24	Analog	SW1 Current Sense. Connected to 0.1 Ohms external limiting current sense resistor	
LX	O	25	Analog	SW1 Inductor Switching Node	
FB	T	26	Analog	SW1 Feedback	$2.7V - 3.5V$
ONOFF	T	27	Analog	SW1 Switch On	IN Level
IN		28	Supply	Input power supply voltage. Connected to single Alkaline battery	$0.9V - 1.8V$
USB	T	29	Supply	USB Supply Input	3.1 V to 5.5 V
VBOOST	O	30	Analog	LDO1 Output Voltage	0 to 3.5 V
VANA	O	31	Analog	LDO2 Output Voltage	0 to 3V
VBG	O	32	Analog	Band Gap Voltage	
GNDB	Ground	33	Ground	Analog Ground	

6. Absolute Maximum Ratings

Table 6-1. Absolute Maximum Ratings*

7. Digital IOs

All the digital IOs: SDIN, BCLK, LRFS, MCLK, RSTB, SPI_DOUT, SPI_DIN, SPI_CLK, SPI_CSB are referred to as VBOOST.

Table 7-1. Digital IOs

Symbol	Parameter	Conditions	VBOOST	Min	Max	Unit
VIL	Low level input voltage	Guaranteed input low Voltage	2.7V to 3.5V	-0.3	0.2 x VBOOST	v
VIH	High level input voltage	Guaranteed input high Voltage	2.7V to 3.5V	0.8 x VBOOST	$VBOOST + 0.3$	v
VOL	Low level output voltage	$1OL = 2 mA$	2.7V to 3.5V	\sim	0.4	
VOH	High level output voltage	$IOH = 2 mA$	2.7V to 3.5V	VBOOST - 0.5V	--	V

8. SPI Interface

8.1 SPI architecture

The SPI is a 4 wire bi-directional asynchronous serial link. It works only in slave mode. The protocol is the following:

Figure 8-1. SPI Protocol Diagram

8.2 SPI Protocol

On SPI_DIN, the first bit is a read/write bit. 0 indicates a write operation while 1 is for a read operation. The 7 following bits are used for the register address and the 8 last ones are the write data. For both address and data, the most significant bit is the first one.

In case of a read operation, SPI_DOUT provides the contents of the read register, MSB first.

The transfer is enabled by the SPI_CSB signal, active low. When there is no operation on the SPI interface, SPI_DOUT is set in high impedance to allow sharing of MCU serial interface with other devices. The interface is reset at every rising edge of SPI_CSB in order to return to an idle state, even if the transfer does not succeed. The SPI is synchronized with the serial clock SPI_CLK. Falling edge latches SPI_DIN input and rising edge shifts SPI_DOUT output bits.

Note that MCLK (Audio Interface Master Clock Input) must run during any SPI write access registers (from address 0x00 to 0x0C).

 8

8.3 Timing Diagram for SPI Interface

8.4 SPI Timing

8.5 SPI Register Tables

Table 8-2. SPI Register Mapping

Table 8-2. SPI Register Mapping (Continued)

8.5.1 DAC Control Register

Register (0x00): DAC Control

▊

8.5.2 DAC Left Line In Gain Register

Register (0x01): Left Line In Gain

8.5.3 DAC Right Line In Gain Register

Register (0x02): Right Line In Gain

8.5.4 DAC Left Master Playback Gain Register

Register (0x03): Left Master Playback Gain

8.5.5 DAC Right Master Playback Gain Register

Register (0x04): Right Master Playback Gain

8.5.6 DAC Left Line Out Gain Register

Register (0x05) Left Line Out Gain

8.5.7 DAC Right Line Out Gain Register

Register (0x06): Right Line Out Gain

▊

8.5.8 DAC Output Level Control Register

Register (0x07): Output Level Control

8.5.9 DAC Mixer Control Register

Register (0x08): Mixer Control

• Digital Mixer Control

The Audio DAC features a digital mixer that allows the mixing and selection of multiple input sources.

The mixing/multiplexing functions are described in the figure below:

Note: Whenever the two mixer inputs are selected, a -6 dB gain is applied to the output signal. Whenever only one input is selected, no gain is applied.

8.5.10 Clock and Sampling Frequency Control Register

Register (0x09): Clock and Sampling Frequency Control

• Master Clock and Sampling Frequency Selection

The following table describes the modes available for master clock and sampling frequency selection.

8.5.11 DAC Miscellaneous

Register (0x0A): Miscellaneous

• Interface Word Length

The selection of input sample size is done using the nbits<1:0> register according to the following table:

• De-emphasis and Dither Enable

The circuit features a de-emphasis filter for the playback channel. To enable the de-emphasis filtering the deemphen signal must be set to high.

Likewise, the dither option (added in the playback channel) is enabled by setting the dithen signal to High.

• I2S Data Format Selector

The selection between modes is done using the dintsel<1:0> signal according to the following table:

8.5.12 DAC Precharge

Register (0x0C): Pre-Charge Control

8.5.13 DAC Reset

Register (0x10): DAC Reset

Note: It's important to never change bit 2. It must stay at 0 (low state).

8.5.14 DAC Miscellaneous Status

Register (0x11): Miscellaneous Status

8.5.15 Interrupt Mask: INT_ MASK (0x12)

Register (0x12): Interrupt Mask

8.5.16 Regulator Control

Register (0x14) Regulators Control

• SELVBOOST

• SELVANA

• ONVANA

8.5.17 Switcher Control

Register (0x15): Switcher Control

8.5.18 Microphone Amplifier Control

Read/Write

Register (0x17): Microphone Amplifier Control

8.5.19 DC/DC Output Voltage Control

Read/Write

Register (0x20): DC/DC Output Voltage Control

• DC_SEL_VOUT

Notes: 1. **Important:** In the Register 0x20, only the Bits #4 and #3 can be modified. The others bits should keep there initial values.

It's important to apply the sequence as follows:

- Read The register 0x20
- Copy the values
- Only modify the bits #4 and #3 of DC_SEL_VOUT
- Write the register 0x20
	- 2. It's important to have an output voltage correlation between DC/DC output and VBOOST_LDO output. The correlation should be as shown in [Table 8-3](#page-26-0) that follows:

▊

9. Power Supplies

9.1 DC to DC Boost Converter (SW1)

9.1.1 Features

- **Input Voltage Range: 0.9V to 1.8V (Single Alkaline Battery)**
- **From 0 to 100 mA Maximum Output Current When Started**
- **4 Programmable Output Voltages, 2.6V, 2.8V, 3.0V and 3.3V (Default Value).**
- **Peak Efficiency with 50 mA Output Current**
- **Overcurrent Protection Through External Resistor**

9.1.2 Description

- DCDC is a high-efficiency DC/DC boost converter designed for single cell alkaline batteries found in PDA's, MP3 players, and other handheld portable devices. It can work with battery voltage as low as 0.9V, and lower than 1.8V.
- The Boost Converter is optimized for current load of 50 mA and 3.3V output voltage. It includes a low resistive 0.2 Ohms N-channel power switch, a start-up oscillator, and an integrated current limitation. In particular, this current limitation can be achieved using a lowvalue 100 mOhms external resistor.

9.1.3 Functional Diagram and Typical Application

9.1.4 Electrical Specifications

Conditions

.No load current in start-up phase (load resistor higher than 10 KOhms).

9.1.5 Control Modes

FB Voltage Selection

- The FB voltage can be selected with DC_SEL_VOUT<4:3>, according to the following table. When DCDC starts SEL_VOUT must be set to <00>.
- The FB voltage can be modified by changing bits 4 and 3 of the register 0x20. It's important to only modify this two bits in this register. (see § 8.5.19 for the sequence)

Table 9-2. Control Modes

DC_SEL_VOUT<4:3>	Minimum Output Value	Output Value	Maximum Output Value
00 (default)	3.10V	3.3V	3.45V
01	2.52V	2.6V	2.66V
10	2.67V	2.8V	2.88V
	2.82V	3.0V	3.10V

9.1.6 Typical Performance Characteristics

Typical condition means:

Figure 9-2. Spice Simulation Results

9.2 LDO1: 3.3V From USB Port

9.2.1 Features

- **Stand Alone Voltage Regulator with Internal Bandgap Voltage Generator**
- **2.7V, 2.8V, 2.9V, 3.0V, 3.1V, 3.2V, 3.3V, 3.4V and 3.5V Programmable Output Voltages and 150 mA of Max Load Current**
- **4.5V to 5.5V Supply Voltage**
- **3.1V to 5.5V Supply Voltage for 2.7V and 2.9V output voltage**

9.2.2 Description

LDO1 is a low drop out voltage regulation module that can be used to provide 9-step programmable output voltages and 150 mA of maximum load current. It is designed to be integrated with other analog cells, digital logic, microcontrollers, DSP cores, and memory blocks into system-onchip products. An internal reference voltage (bandgap voltage) is provided to the regulator, so only a compensation capacitor connected at the output node versus ground is needed for correct operations.

9.2.3 Functional Diagram and Typical Application

9.2.4 Electrical Specifications

Table 9-3. LDO1 Electrical Specifications

9.2.5 Control Modes - Enable/Disable

The LDO is enabled by applying a voltage on the USB pin. It is automatically disabled by removing the USB supply.

9.2.6 Output Voltage Selection

The VBOOST voltage can be modified by changing SELVBOOST<3:0> of the register 0x14. (See [Section 8.5.16 "Regulator Control".](#page-23-0))

Table 9-4. LDO Output Voltage Selection

	ັ
SELVBOOST<3:0>	Output Voltage
x001	2.7V
x010	2.8V
x011	2.9V
x100	3.0V
x101	3.1V
x110	3.2V
x111	3.3V
0000	3.4V
1000	3.5V

9.3 LDO2: 2.4V to 3.0V for Internal Analog Section Supply

9.3.1 Features

- **Low Noise Low Drop Out Voltage Regulator**
- **2.4V to 3V Programmable Output Voltage**
- **2.7V to 3.5V Supply Operation (VANA = 2.4V, 2.6V, 2.8V)**
- **3.2V to 3.5V Supply Operation (VANA = 3V)**
- **60mA of Max Load Current**
- **Power-down Mode (Consumption <1mA)**
- **Typical cUrrent Consumption 195 µA**

9.3.2 Description

LDO2 is a Low Drop Out (LDO) voltage regulator with a programmable 2.4V to 3V output voltage, rated for loads up to 20 mA. The circuit comprises a PMOS pass device, an error amplifier, a feedback resistive network sized to have closed loop gain. These blocks constitute the regulating loop. A 2-bit decoder allows controlling the programmable output voltage. Available output voltages are 2.4V, 2.6V, 2.8V and 3V. An over-current and short-circuit protection circuit has been included to limit the output current delivered by the regulator, thus avoiding its destruction in short circuit configuration. An external reference voltage (bandgap voltage) is needed. The target reference voltage is 1.231V delivered. A ceramic or low ESR tantalum capacitor is needed (2.2 µF minimum value) as external compensation.

9.3.3 Functional Diagram and Typical Application

9.3.4 Electrical Specifications

Table 9-5. General Power Supply Parameters

Table 9-6. LDO2 Parameters

9.3.5 Control Modes - Truth Table

Figure 9-5. The LDO2 can be enabled and disabled by activating the bit #6 (ONVANA) on the register 0x14. (See [Section 8.5.16 "Regulator Control"\)](#page-23-0)

All digital signals are referred to the supply voltage VBOOST.

9.3.6 Output Voltage Selection

The VANA voltage can be modified by changing the value of SELVANA<5:4> of the register 0x14. (See [Section 8.5.16 "Regulator Control"\)](#page-23-0)

SELVANA<5:4>	Output Values
00	2.8V
01	2.6V
10	3.0V
11	2.4V

Table 9-8. LDO2 Output Voltage Selection

10. Audio DAC

10.1 Description

The Audio DAC IP core includes the functions of Stereo D-to-A conversion, channel filtering, line-in/microphone and line-out/headphone interfacing with integrated short-circuit detection. Oversampling sigma delta technology is used in the D-to-A conversion. The channel filters are implemented digitally, embedded in the interpolation filters associated with the converter. Stereo single-ended interfaces are available for line-in/microphone and line-out/headphone connections. Mono differential interfaces are available for auxiliary input amplifier and PA driver. The line-out/headphone amplifier can drive an external load of 32 Ohms with 20 mWrms. The linein/microphone amplifier has an input range of 70 mVrms at maximum gain. The data port is I2S serial at 8 to 48kHz. In full power-down mode the standby current consumption is less than 10 µA.

10.2 Functional Diagram

10.3 Electrical Specifications

AVDD, AVDDHS = 2.8 V, T_A = 25°C, typical case, unless otherwise noted.

All noise and distortion specifications are measured in the 20 Hz to 0.425xFs and A-weighted filtered. Full-scale levels scale proportionally with the analog supply voltage.

Table 10-1. Audio DAC Electrical Specifications

Parameters	Min	Typ	Max	Units	
Overall					
Analog Supply Voltage (AVDD, AVDDHS)	2.7	2.8	3.3	V	
Digital Supply Voltage (VDIG)	2.4	2.8	3.3	V	
Digital Inputs/outputS					
Resolution		20		bits	
Logic Family		CMOS			
Logic Coding		2's Complement			
ANALOG PERFORMANCE - DAC to Line-out/Headphone Output					
		1.65	$-$	Vpp	
Output Common Mode Voltage	$\overline{}$	0.5x AVDDHS		\vee	
Output load resistance (on HSL, HSR) Headphone load Line load	16	32 10		Ohm kOhm	
Output load capacitance (on HSL) Headphone load Line load		30 30	1000 150	pF pF	
Signal to Noise Ratio (-1dBFS @ 1kHz input and 0dB Gain) Line and Headphone loads	87	92		dB	
Total Harmonic Distortion (-1dBFS @ 1kHz input and 0dB Gain) Line Load Headphone Load Headphone Load (16 Ohm)		-80 -65 -40	-76 -60	dB dB dB	
Dynamic Range (measured with -60 dBFS @ 1kHz input, extrapolated to full- scale) Line Load Headphone Load	88 70	93 74		dB dB	
Interchannel mismatch		0.1	$\mathbf{1}$	dB	
Left-channel to right-channel crosstalk (@ 1kHz)		-90	-80	dB	
Output Headset Driver Level Control Range	-6		6	dB	
Output Headset Driver Level Control Step		3		dB	
PSRR 1 kHz 20 kHz		55 50		dB dB	
Maximum output slope at power up (100 to 220 µF coupling capacitor)			3	V/s	

Table 10-1. Audio DAC Electrical Specifications (Continued)

Table 10-1. Audio DAC Electrical Specifications (Continued)

 \blacksquare

10.4 Data Interface

Normal operation is entered by applying correct LRFS, BCLK and SDIN waveforms to the serial interface, as illustrated in the timing diagrams below. To avoid noise at the output, the reset state is maintained until proper synchronization is achieved in the serial interface.

The data interface allows three different data transfer modes as described below.

The selection between modes is done using the DINTSEL<5:4> bits in the register 0x0A accord-

R0 **K & K & K** L(N-1) **K** L(N-2) **K** ... K L1 K L0 K & K R(N-1) K R(N-2) K ... K R1 K R0 K L(N-1)

ing with the following table.

The data interface always works in slave mode. This means that the LRFS and the BCLK signals are provided by the host controller. In order to achieve proper operation, the LRFS and the BCLK signals must be synchronous with the MCLK master clock signal and their frequency relationship must reflect the selected data mode. For example, if the data mode selected is the 20 bit MSB Justified, then the BCLK frequency must be 40 times higher than the LRFS frequency.

SDIN

10.5 Timing Specifications

Figure 10-5. Data Interface Timing Diagram

The timing constraints of the data interface are described in the following diagram and table.

Table 10-2. Data Interface Timing Parameters

11. Microphone Preamplifier (OP065)

11.1 Features

- **Standard Quality Amplifier for Electret Microphone Preamplifier**
- **Low Power Consumption**
- **Few External Components Necessary for a Complete Preamplifier**
- **Internal Bias**
- **Internal Bias for the Electret Microphone**
- **Stand-by Mode**

11.2 Description

The OP065 is a low-voltage operational amplifier designed for a standard quality electret microphone preamplifier. It presents a frequency response, a supply rejection and a noise compatible with voice quality applications. All voltages are referred to gnda. The OP065 is powered by vdda pin, with a nominal voltage of 2.8V. The normal operating mode is defined with ONAMP and ONMIC pins set to 1 (referred to vdda).

11.3 Functional Diagram

11.4 Detailed Description

The OP065 is a two-stage class A amplifier with a nominal 40 dB gain. The gain can be reduced simply by adding a resistor in serie with the MICINN input. Included input resistor is 2.2 KOhms.

Few external components are needed for a complete electret microphone preamplifier solution:

- Input capacitor between the microphone and the MICINN input of the OP065 (2.2 µF recommended),
- Resistive bridge and the decoupling capacitor for the VCM common mode input (100 KOhms + 100 KOhms bypassed by a 10 µF capacitor recommended)
- Power supply decoupling capacitor for the microphone (10 µF recommended, on MICOUT)

Refer to the typical application suggestion presented in [Figure 2-1 "AT73C209 Functional Block](#page-2-0) [Diagram" on page 3](#page-2-0).

The common mode is to be set externally to half supply. The output MICOUT is then centered to half supply. It is self-biased.

The biasing of the electret microphone is included, through a 1.2 KOhms resistor in serie with the VDDA supply, and available on MICOUT. This bias can be shut down by ONMIC input (bias available with ONMIC $= 1$).

The MICINN input should be AC coupled to the microphone, its DC value is normally set to half supply (as soon as VCM input is biased to half supply).

The output stage is a class A linear structure with an internal low quiescent current. This current will be actually essentially fixed by the external load to be connected (DC coupled) between the output (MICOUT) and the ground. A typical 50 KOhms load is recommended. A maximum 100pF load can be connected to the output.

The OP065 is not optimized for general buffer purpose.

The biasing of the electret microphone is included, through a 2.2 KOhms resistor in serie with the VDDA supply, and available on MIC output.

The MICINN input should be AC coupled to the microphone, its DC value is set to half supply.

11.5 Electrical Specifications

 T_A = 25°C, VSUPPLY = 2.4V to 3.0V, unless otherwise specified.

Table 11-1. Microphone Preamplifier (OP065) Electrical Specifications

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
Operating Supply Voltage	V_{ANA}		2.4	2.8	3.0	V
Output swing	Vc	50 KOhms load	0.2	--	Vana-0.2	v
Voltage gain	Gv	With an ideal voltage source		40	--	dB
Input impedance	Z_{IN}			2200	--	Ohms
Output offset voltage	V_{OFF}	AC input coupling	-10	--	10	mV
Output noise, 40dB gain, without power Supply and microphone contribution	onoise	20 Hz - 20 KHz bandwidth, unweighted 50 kOhms // 100 pF load	--	-67	-62	dBV
Slew-rate	SR	50 kOhms // 100 pF load	± 0.2	--	± 0.4	$V/\mu s$

Table 11-1. Microphone Preamplifier (OP065) Electrical Specifications (Continued)

11.6 Control Modes

The Preamplifier can be enabled or disabled by activating the bit #1 (ONAMP) on the register 0x17. (See [Section 8.5.18 "Microphone Amplifier Control"](#page-24-0).)

Microphone Preamplifier Mode

The microphone bias of the preamplifier can be activated or deactivated by changing the bit #0 (ONMIC) on the register 0x17. (See [Section 8.5.18 "Microphone Amplifier Control".](#page-24-0))

Microphone Bias Mode

Note: when onmic = 0, the MIC pin is pulled down to the ground through a 3 kOhms resistor.

11.7 Typical Application

Figure 11-2. Microphone Preamplifier Typical Application Diagram

The OP065 is used as a 37 dB gain amplifier. Grounds of the microphone and the OP065 are common (GNDA in the schematic). The amplifier is internally supplied by VANA.

A capacitive filter (C2) is added for the microphone supply, since its noise is amplified by the OP065 and then is very critical. A 10 uF minimum value is recommended.

The gain can be attenuated simply by adding an input resistor in serie with MICINN input. The gain is also determined by $Gv[dB] = 20.$ log(220000/(2200+Rsad)), with Rsad the additional input resistor added.

The common mode input (VCM) is internally biased, and has to be decoupled with a 10 uF minimum external capacitor. It is very important for the total output noise.

Care should be taken to avoid coupling between the input of the OP065 and noisy environments (digital power, burst mode of GSM, etc.)

The input capacitor determines the low cut-off frequency with the internal 2.2 kOhms resistor: Fcutt-off $= 0.159/(2200)$. Cin) with Cin: value of the input capacitor Cin.

12. Power On/Off Procedure

There are two different inputs for supplying AT73C209. The first one, is to apply a cell on IN pin. The DC/DC converter should be activated by the ONOFF pin. The second one, is to apply a USB_Voltage on USB pin. Each power_up is described below.

12.1 DC/DC Power On/Off Operation

)

The Power-On of the DC/DC boost converter is activated by a push_button. The Power-Off of the DC/DC boost converter is controlled by the micro-controller MCU using 1 signal register.

- The DC/DC boost converter is enabled with the ONOFF signal (Push button activation). If ONOFF is high, the FB output voltage of the DC/DC converter begins to rise. The load resistor in this start-up phase must be higher than 10 KOhms. Once FB reaches the 2.4V threshold voltage, a DC/DC internal low-quiescent voltage supervisor sets the DC/DC internal STARTV signal to high (FB level). Then, the DC/DC output voltage FB rises to 3.3V.
- The DC/DC boost converter is kept enabled by the micro-controller by setting the UPONOFF bit to high level (register 0x15, bit # 0). Then, the ONOFF signal can be released to 0.
- Once FB reaches 2.4V threshold, a counter is started and after 256 cycles of internal oscillator, a reset signal (high level) is generated on RSTB pin. The reset time should be calculated as follows: (5kHz < F oscillator < 20kHz

12,
$$
8ms = 256 \times \frac{1}{f_{OSCILLATOR-MAX}} < Reset - Time < 256 \times \frac{1}{f_{OSCILLATOR-MIN}} = 51, 2ms
$$

• The off mode is entered as soon as the micro-controller resets the UPONOFF bit to 0 (provided ONOFF=0). Then, the DC/DC boost converter is disabled

Figure 12-1. DC/DC Power On/Off Procedure Diagram

12.2 USB Power On/Off Operation (USB Alone)

This paragraph describes the power on/off procedure if only a USB power supply is applied. The DC/DC converter is in Off Mode.

When a voltage over 4.5V is applied on the USB pin, the LDO1 starts itself automatically.

- The FB/VBOOST output voltage begins to rise. Once the output voltage reaches the 2.4V threshold voltage, an internal low-quiescent voltage supervisor sets the LDO1 enable signal to high. Then, the LDO1 output voltage rises to 3.4V.
- Once FB/VBOOST reaches 2.4V threshold, a counter is started and after 256 cycles of internal oscillator, a reset signal (high level) is generated on RSTB pin. The reset time should be calculated as follows

12,
$$
8ms = 256 \times \frac{1}{f_{OSCILLATOR-MAX}} < Reset - Time < 256 \times \frac{1}{f_{OSCILLATOR-MIN}} = 51, 2ms
$$

• The off mode is entered as soon as USB input voltage is removed or under 4.5V.

AT73C209

 48

 AT73C209

12.3 USB vs. DC/DC Power On/Off Operation

AT73C209 has a power selection priority. The USB pin powers the LDO1 and the IN pin powers the DC/DC Converter. If the output value of the DC/DC is higher than the LDO1 output value, then the LDO1 is stopped. If the output value of the LDO1 is higher than the DC/DC output value, then the DC/DC is put in standby mode.

Using default values (In the registers), the power-on and power-off sequences when both power supplies are connected, should be as described below.

Power On Sequence:

A cell is connected to the IN pin. The DC/DC can be started by ONOFF pin activation and latched by UPONOFF bit activation.

- FB output rises until 3.3V (default voltage value).
- Once FB reaches 2.4V, a counter is launched and after "Reset-Time", a reset is generated on RSTB pin.
- DC/DC is running.

A USB power supply is connected on the USB pin. The LDO1 starts automatically.

- FB/VBOOST rises to 3.4V (default voltage value).
- The DC/DC is in Standby Mode

Power Off Sequence:

The USB power supply is disconnected from the USB pin.

- The LDO1 is stopped
- The DC/DC is start (in case of UPONOFF bit activated)
- FB/VBOOST is falling down until 3.3V (default voltage value).

The DC/DC is stopped when the UPONOFF bit is set to Low.

12.4 Audio DAC Start-up Sequences

The power up of the circuit can be performed independently for several blocks. The figure below presents the sequence carried out for powering up a specific block XX where XX can be any of the several blocks described below0

The sequence flow starts by setting to High the block specific fast-charge control bit and subsequently the associated power control bit. Once the power control bit is set to High, the fast charging starts. This action begins a user controlled fast-charge cycle. When the fast-charge period is over, the user must reset the associated fast-charge bit and the block is ready for use. If a power control bit is cleared a new power up sequence is needed.

The several blocks with independent power control are identified in [Table 12-1](#page-50-0) below. The table describes the power-on control and fast-charge bits for each block.

Powered Up Block	Power On Control Bit	Precharge Control Bit		
Vref & Vcm generator	onmstr (reg 0x0C; bit #0)	prcharge (reg 0x0C; bit #1)		
Left line in amplifier	onlnil (reg 0x00; bit #0)	prchargeil (reg 0x0C; bit #2)		
Right line in amplifier	onlnir (reg 0x00; bit #1)	prchargeir (reg 0x0C; bit #3)		
Left line out amplifier	onlnol (reg 0x00; bit #2)	prchargeol (reg 0x0C; bit #4)		
Right line out amplifier	onlnor (reg 0x00; bit #3)	prchargeor (reg 0x0C; bit #5)		
Left D-to-A converter	ondacl (reg 0x00; bit #4)	Not Needed		
Right D-to-A converter	ondacr (reg $0x00$; bit #5)	Not Needed		

Table 12-1. Power-on Control and Fast-charge Bits Table

The power-on settling times for each of the different blocks are described in [Table 12-1](#page-50-0) below.

Table 12-2. Power On Settling Time

Note: All the blocks can be precharged simultaneously

13. Interrupts

There are three possible interrupts. Two for USB (for Plugin and Unplug) and one for Headset Short-Circuit. These three interrupts generate a low signal on ITB output pin and are generated as described in the following paragraphs.

To see each interrupt, it's necessary to mask it by using the register "INT_MASK" at 0x11 register address.

13.1 USB Interrupt

There are two interrupt generation possibilities for USB. USB Rising interrupt and USB Falling interrupt. The dedicated registers for these interrupts are 0x11 (MISC_STATUS) and 0x12 (INT_MASK). These registers are described below. (Only the used bits for USB interrupt are described. For more details, see [Section 8.5.14 on page 23](#page-22-0) and [Section 8.5.15 on page 23](#page-22-1).)

Register (0x11): Miscellaneous Status (MISC_STATUS)

Register (0x12): Interrupt Mask (INT_MASK)

13.1.1 USB Rising Interrupt

The sequence of USB Rising Interrupt generation, is shown below.

Figure 13-1. USB Rising Interrupt DIagram

The sequence of the USB Rising Interrupt is described below.

-
-
- Put bit #1 of register 0x12 to High \rightarrow USB Mask Rising (USBRMSK) goes to High
- Plug USB input \rightarrow bit #1 of register 0x11 (USBOK), goes to High Level
	- \rightarrow ITB output goes to Low Level
-
- Put bit #1 of register 0x12 to Low → USB Mask Rising (USBRMSK) goes to Low
	- \rightarrow bit #1 of register 0x11 (USBOK), stay to High Level
	- \rightarrow ITB output goes to High Level

 54

AT73C209

13.1.2 USB Falling Interrupt

The Falling Interrupt generation sequence is shown below.

Figure 13-2. USB Falling Interrupt Diagram

The sequence of the USB Falling Interrupt is described below.

-
-
- Put bit #2 of register 0x12 to High \rightarrow USB Mask Rising (USBRMSK) goes to High
- Unplug USB input → bit #1 of register 0x11 (USBOK), goes to Low Level
	- \rightarrow ITB output goes to Low Level
-
- Put bit #2 of register 0x12 to Low → USB Mask Rising (USBRMSK) goes to Low
	- \rightarrow bit #1 of register 0x11 (USBOK), stays at Low Level
	- \rightarrow ITB output goes to Low Level

13.2 Headset Short-Circuit Interrupt

There is one interrupt generation for Headset Short-Circuit (see diagram below). The dedicated registers for this interrupt are 0x11 (MISC_STATUS) and 0x12 (INT_MASK). These registers are described below. (Only the used bits for Headset Short-Circuit interrupt are described. For more details, see [Section 8.5.14 on page 23](#page-22-0) and [Section 8.5.15 on page 23.](#page-22-1))

Register (0x11): Miscellaneous Status (MISC_STATUS)

13.2.1 Headset Short-Circuit Sequence

The sequence of the Head Short-Circuit Interrupt is described below.

- Put bit #0 of register 0x12 to High. →Headset Short-Circuit Mask (HSSMSK) goes to High.
- Power on the headset output driver.
- Make a short circuit on the headset output (right or left channel. (HSSHORT), goes to High Level. →After Debounce Time bit #0 of register 0x11

 \rightarrow Then ITB output goes to High Level.

The Headset Short Circuit Flag (HSSHORT) should be removed by switching off the headset driver.

The ITB signal (Interrupt Output) should be removed by putting bit #0 of register 0x12 (HSSMSK) to Low.

13.2.2 Debounce Time

The debounce time depends on the internal oscillator deviation. It operates after 512 cycles of internal oscillator period time. It should be calculated as follows:

Debounce - Time equation:

Debounce – Time = $512 \times \left(\frac{1}{5}\right)$ $= 512 \times \left(\frac{1}{f_{OSCILLATOR}}\right)$

Internal Frequency Oscillator Deviation:

 $5kHz < f_{OSCIILATOR} < 20kHz$

Debounce-Time Min. and Max.:

25·· ,6*ms* < < *Debounce Time* – 104 2, *ms*

14. Current Consumption in Different Modes

15. Package Drawing

Package Type: **QFN32, 7x7mm**

- Notes: 1. All dimensions are in mm.
	- 2. Drawing is for general information only. Refer to JEDEC drawing MO-220 for additional information.

Figure 15-2. Package Drawing with Pin 1 and Marking (Bottom View)

16. Revision History

Table 16-1. Revision History

Table of Contents

▊

 $\ddot{\mathbf{u}}$

Headquarters International

Atmel Corporation 2325 Orchard Parkway San Jose, CA 95131 USA Tel: 1(408) 441-0311 Fax: 1(408) 487-2600

Atmel Asia Room 1219 Chinachem Golden Plaza 77 Mody Road Tsimshatsui East Kowloon Hong Kong Tel: (852) 2721-9778 Fax: (852) 2722-1369

Atmel Europe Le Krebs 8, Rue Jean-Pierre Timbaud BP 309 78054 Saint-Quentin-en-Yvelines Cedex France Tel: (33) 1-30-60-70-00 Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg. 1-24-8 Shinkawa Chuo-ku, Tokyo 104-0033 Japan Tel: (81) 3-3523-3551 Fax: (81) 3-3523-7581

Product Contact

Web Site

www.atmel.com [Analog Companions \(PMAAC\)](http://www.atmel.com/products/powermanage/default.asp) **Technical Support** pmaac@atmel.com [Atmel techincal support](http://www.atmel.com/dyn/products/support.asp) **Sales Contacts** www.atmel.com/contacts/

Literature Requests www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. **EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDI-TIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDEN-TAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.** Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2008 Atmel Corporation. All rights reserved. Atmel®, logo and combinations thereof, and others are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.