High Speed, High Gain Bipolar NPN Power Transistor

with Integrated Collector–Emitter Diode and Built–in Efficient Antisaturation Network

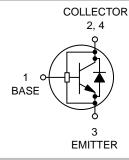
The BUL45D2G is state–of–art High Speed High gain BiPolar transistor (H2BIP). High dynamic characteristics and lot–to–lot minimum spread (± 150 ns on storage time) make it ideally suitable for light ballast applications. Therefore, there is no need to guarantee an h_{FE} window. It's characteristics make it also suitable for PFC application.

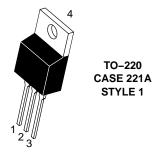
Features

- Low Base Drive Requirement
- High Peak DC Current Gain
- Extremely Low Storage Time Min/Max Guarantees Due to the H2BIP Structure which Minimizes the Spread
- Integrated Collector-Emitter Free Wheeling Diode
- Fully Characterized and Guaranteed Dynamic V_{CE(sat)}
- "6 Sigma" Process Providing Tight and Reproductible Parameter Spreads
- These Devices are Pb-Free and are RoHS Compliant*

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Sustaining Voltage	V _{CEO}	400	Vdc
Collector-Base Breakdown Voltage	V _{CBO}	700	Vdc
Collector-Emitter Breakdown Voltage	V _{CES}	700	Vdc
Emitter-Base Voltage	V _{EBO}	12	Vdc
Collector Current – Continuous	I _C	5	Adc
Collector Current – Peak (Note 1)	I _{CM}	10	Adc
Base Current - Continuous	I _B	2	Adc
Base Current – Peak (Note 1)	I _{BM}	4	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	75 0.6	W W/°C
Operating and Storage Temperature	T _J , T _{stg}	-65 to +150	°C


Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.



ON Semiconductor®

www.onsemi.com

POWER TRANSISTOR 5.0 AMPERES, 700 VOLTS, 75 WATTS

MARKING DIAGRAM

A = Assembly Location

Y = Year
WW = Work Week
G = Pb-Free Package

ORDERING INFORMATION

Device	Package	Shipping
BUL45D2G	TO-220 (Pb-Free)	50 Units / Rail

^{1.} Pulse Test: Pulse Width = 5 ms, Duty Cycle ≤ 10%.

^{*}For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

THERMAL CHARACTERISTICS

Characteristics	Symbol	Max	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.65	°C/W
Thermal Resistance, Junction-to-Ambient		62.5	°C/W
Maximum Lead Temperature for Soldering Purposes 1/8" from Case for 5 Seconds		260	°C

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS					
Collector–Emitter Sustaining Voltage (I _C = 100 mA, L = 25 mH)	V _{CEO(sus)}	400	450	-	Vdc
Collector–Base Breakdown Voltage (I _{CBO} = 1 mA)	V _{CBO}	700	910	-	Vdc
Emitter-Base Breakdown Voltage (I _{EBO} = 1 mA)	V _{EBO}	12	14.1	_	Vdc
Collector Cutoff Current $(V_{CE} = Rated V_{CEO}, I_B = 0)$	I _{CEO}	-	_	100	μAdc
Collector Cutoff Current $(V_{CE} = Rated \ V_{CES}, \ V_{EB} = 0)$ $@\ T_C = 25^{\circ}C$ $@\ T_C = 125^{\circ}C$ $(V_{CE} = 500 \ V, \ V_{EB} = 0)$	ICES	- -	- -	100 500	μAdc
@ T _C = 125°C Emitter-Cutoff Current (V _{FB} = 10 Vdc, I _C = 0)	I _{EBO}		_	100	μAdc
ON CHARACTERISTICS					
Base–Emitter Saturation Voltage ($I_C = 0.8$ Adc, $I_B = 80$ mAdc) @ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$	V _{BE(sat)}		0.8 0.7	1 0.9	Vdc
(I _C = 2 Adc, I _B = 0.4 Adc) @ T _C = 25°C @ T _C = 125°C		<u>-</u>	0.89 0.79	1 0.9	
Collector–Emitter Saturation Voltage $ \begin{aligned} &(I_C = 0.8 \text{ Adc, } I_B = 80 \text{ mAdc}) \\ & @ T_C = 25^{\circ}\text{C} \\ & @ T_C = 125^{\circ}\text{C} \end{aligned} $ $ & @ T_C = 25^{\circ}\text{C} $ $ & @ T_C = 125^{\circ}\text{C} $ $ & (I_C = 0.8 \text{ Adc, } I_B = 40 \text{ mAdc}) $ $ & @ T_C = 25^{\circ}\text{C} $	V _{CE(sat)}	- - - -	0.28 0.32 0.32 0.38 0.46	0.4 0.5 0.5 0.6 0.75	Vdc
@ $T_C = 125^{\circ}C$ DC Current Gain ($I_C = 0.8 \text{ Adc}, V_{CE} = 1 \text{ Vdc}$) @ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$ ($I_C = 2 \text{ Adc}, V_{CE} = 1 \text{ Vdc}$) @ $T_C = 25^{\circ}C$ @ $T_C = 25^{\circ}C$ @ $T_C = 125^{\circ}C$	h _{FE}	22 20 10 7	0.62 34 29 14 9.5	- - -	-
DIODE CHARACTERISTICS	ļļ		Į.		
Forward Diode Voltage (I _{EC} = 1 Adc) @ T _C = 25°C @ T _C = 125°C (I _{EC} = 2 Adc)	VEC	- -	1.04 0.7	1.5 -	V
(IEC = 2 Add) @ T _C = 25°C @ T _C = 125°C (I _{EC} = 0.4 Adc) @ T _C = 25°C @ T _C = 125°C		- - -	1.2 - 0.85 0.62	1.6 - 1.2	

ELECTRICAL CHARACTERISTICS (continued) ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic				Symbol	Min	Тур	Max	Unit
DIODE CHARACTERISTIC	cs							
Forward Recovery Time (see Figure 27)				T _{fr}	-	330	-	ns
@ $T_C = 25^{\circ}C$ ($I_F = 0.4 \text{ Adc, di/dt} = 10$ @ $T_C = 25^{\circ}C$	A/μs)				-	360 320	_	
DYNAMIC CHARACTERIS	STICS							<u> </u>
Current Gain Bandwidth (I _C = 0.5 Adc, V _{CE} = 10				f _T	-	13	_	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0,	f = 1 MHz)			C _{ob}	-	50	75	pF
Input Capacitance (V _{EB} = 8 Vdc)				C _{ib}	-	340	500	pF
DYNAMIC SATURATION	VOLTAGE							
Dynamic Saturation Voltage: Determined 1 μs and	$I_C = 1 \text{ A}$ $I_{B1} = 100 \text{ mA}$	@ 1 μs	@ T _C = 25°C @ T _C = 125°C	V _{CE(dsat)}	- -	3.7 9.4	- -	V
3 μs respectively after rising I _{B1} reaches	V _{CC} = 300 V	@ 3 μs	@ T _C = 25°C @ T _C = 125°C		-	0.35 2.7	- -	V
90% of final I _{B1}	$I_C = 2 A$ $I_{B1} = 0.8 A$ $V_{CC} = 300 V$	@ 1 μs	@ T _C = 25°C @ T _C = 125°C		-	3.9 12	- -	V
		@ 3 μs	@ T _C = 25°C @ T _C = 125°C		-	0.4 1.5	- -	V
SWITCHING CHARACTE	RISTICS: Resistive	Load (D.0	C. ≤ 10%, Pulse W	idth = 20 μs)		1	I	L
Turn-on Time	$I_C = 2 \text{ Adc}, I_{B1} = 0$ $I_{B2} = 1 \text{ Add}$	0.4 Adc	@ T _C = 25°C @ T _C = 125°C	t _{on}	- -	90 105	150 –	ns
Turn-off Time	V _{CC} = 300 V	dc	@ T _C = 25°C @ T _C = 125°C	t _{off}	- -	1.15 1.5	1.3	μs
Turn-on Time	$I_C = 2 \text{ Adc}, I_{B1} = 0$ $I_{B2} = 0.4 \text{ Add}$	lc	@ T _C = 25°C @ T _C = 125°C	t _{on}	- -	90 110	150 –	ns
Turn-off Time	V _{CC} = 300 Vdc		@ T _C = 25°C @ T _C = 125°C	t _{off}	2.1	- 3.1	2.4 -	μs
SWITCHING CHARACTE	RISTICS: Inductive	Load (V _{cl}	_{amp} = 300 V, V _{CC} =	= 15 V, L = 20)0 μH)	•	•	
Fall Time	$I_C = 1 \text{ Adc}$ $I_{B1} = 100 \text{ mAdc}$ $I_{B2} = 500 \text{ mAdc}$		@ T _C = 25°C @ T _C = 125°C	t _f	-	90 93	150 -	ns
Storage Time			@ T _C = 25°C @ T _C = 125°C	t _s	-	0.72 1.05	0.9 -	μs
Crossover Time			@ T _C = 25°C @ T _C = 125°C	t _c	- -	95 95	150 –	ns
Fall Time	I _C = 2 Adc I _{B1} = 0.4 Adc - I _{B2} = 0.4 Adc		@ T _C = 25°C @ T _C = 125°C	t _f	-	80 105	150 –	ns
Storage Time			@ T _C = 25°C @ T _C = 125°C	t _s	1.95 –	- 2.9	2.25	μs
Crossover Time			@ T _C = 25°C @ T _C = 125°C	t _c		225 450	300	ns

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL STATIC CHARACTERISTICS

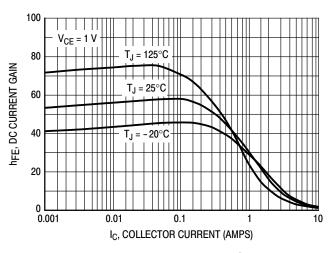


Figure 1. DC Current Gain @ 1 Volt

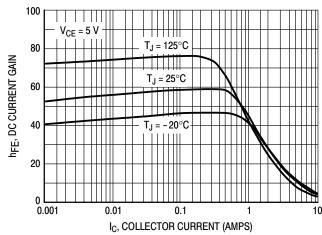


Figure 2. DC Current Gain @ 5 Volt

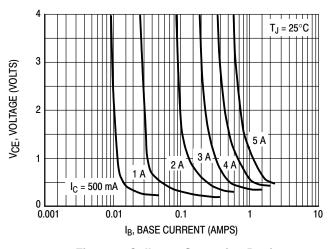


Figure 3. Collector Saturation Region

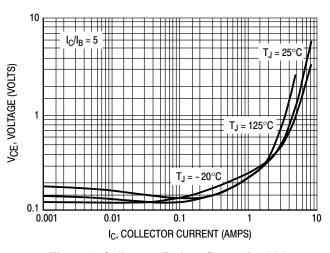


Figure 4. Collector–Emitter Saturation Voltage

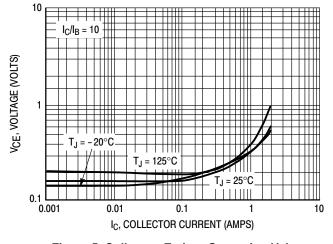


Figure 5. Collector-Emitter Saturation Voltage

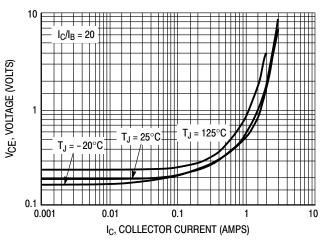


Figure 6. Collector-Emitter Saturation Voltage

TYPICAL STATIC CHARACTERISTICS

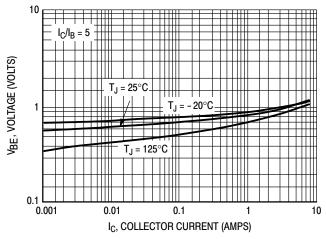


Figure 7. Base-Emitter Saturation Region

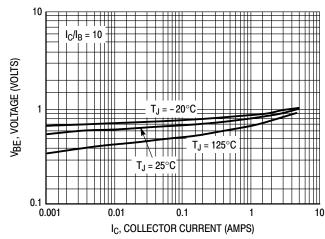


Figure 8. Base-Emitter Saturation Region

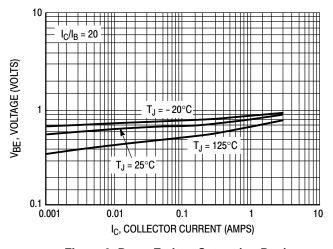


Figure 9. Base-Emitter Saturation Region

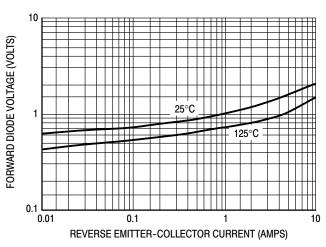


Figure 10. Forward Diode Voltage



Figure 11. Capacitance

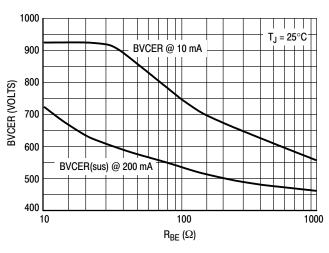


Figure 12. BVCER = f(ICER)

TYPICAL SWITCHING CHARACTERISTICS

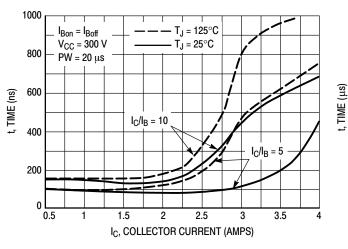


Figure 13. Resistive Switch Time, ton

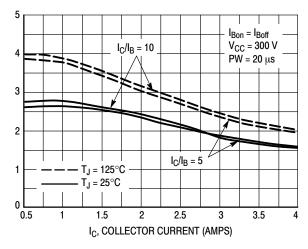


Figure 14. Resistive Switch Time, toff

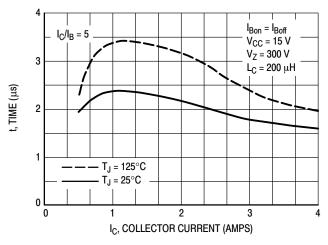


Figure 15. Inductive Storage Time, $t_{si} @ I_C/I_B = 5$

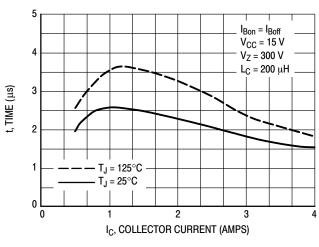


Figure 16. Inductive Storage Time, $t_{si} @ I_C/I_B = 10$

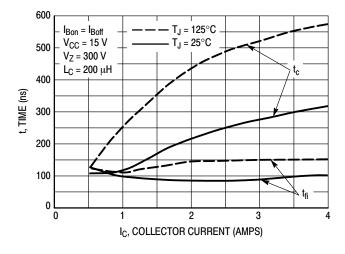


Figure 17. Inductive Switching, $t_c \& t_{fi} @ I_c/I_B = 5$

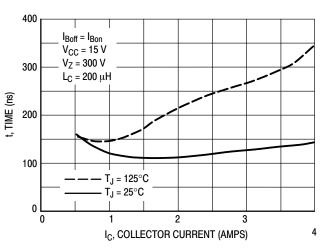


Figure 18. Inductive Switching, $t_{fi} @ l_C/l_B = 10$

TYPICAL SWITCHING CHARACTERISTICS

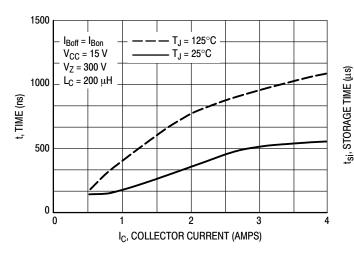
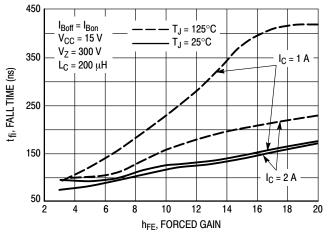



Figure 19. Inductive Switching, $t_c @ I_C/I_B = 10$

Figure 20. Inductive Storage Time

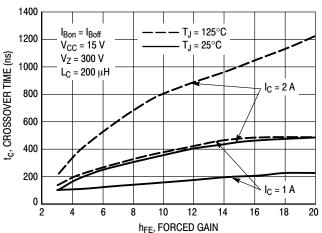
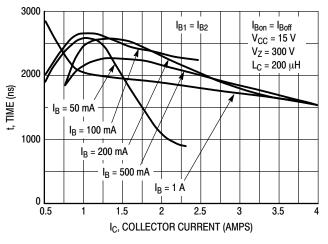



Figure 21. Inductive Fall Time

Figure 22. Inductive Crossover Time

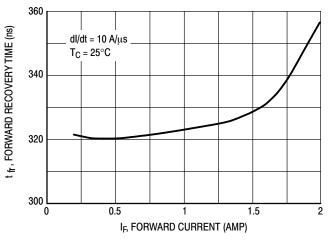


Figure 23. Inductive Storage Time, tsi

Figure 24. Forward Recovery Time tfr

TYPICAL SWITCHING CHARACTERISTICS

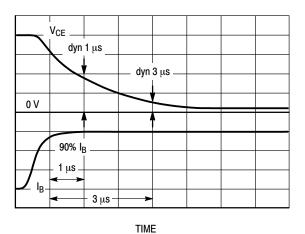


Figure 25. Dynamic Saturation Voltage Measurements

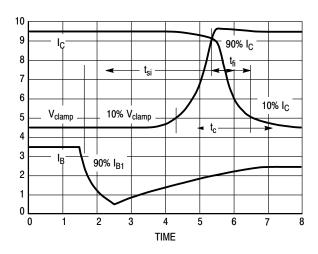


Figure 26. Inductive Switching Measurements

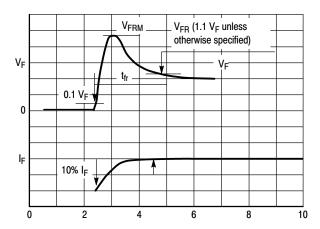
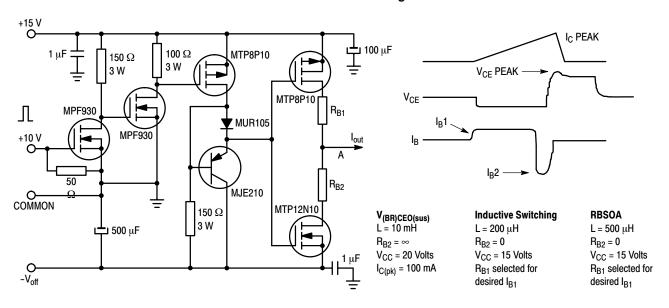



Figure 27. t_{fr} Measurements

TYPICAL SWITCHING CHARACTERISTICS

Table 1. Inductive Load Switching Drive Circuit

TYPICAL CHARACTERISTICS

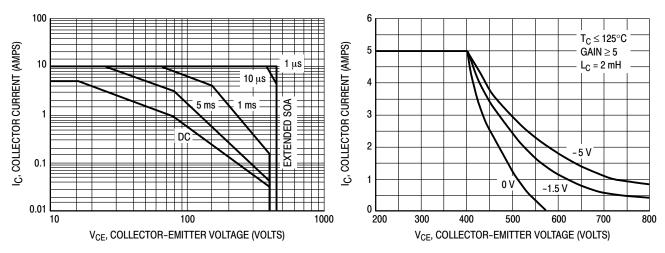


Figure 28. Forward Bias Safe Operating Area

Figure 29. Reverse Bias Safe Operating Area

TYPICAL CHARACTERISTICS

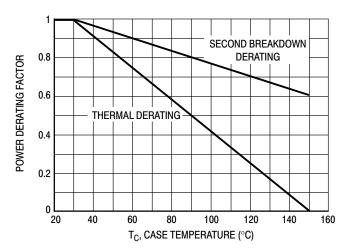


Figure 30. Forward Bias Power Derating

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_C - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate. The data of Figure 28 is based on $T_C = 25$ °C; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated when $T_C > 25$ °C. Second breakdown limitations do not derate the same as thermal limitations. Allowable current at the voltages shown on

Figure 28 may be found at any case temperature by using the appropriate curve on Figure 30.

 $T_{J(pk)}$ may be calculated from the data in Figure 31. At any case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by second breakdown. For inductive loads, high voltage and current must be sustained simultaneously during turn—off with the base to emitter junction reverse biased. The safe level is specified as a reverse biased safe operating area (Figure 29). This rating is verified under clamped conditions so that the device is never subjected to an avalanche mode.

TYPICAL THERMAL RESPONSE

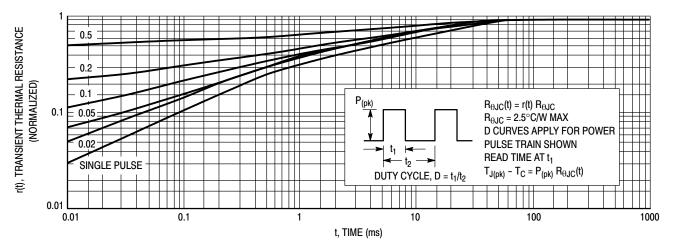
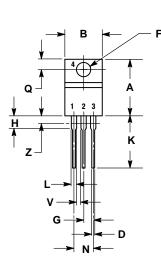
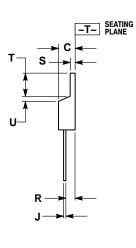




Figure 31. Typical Thermal Response ($Z_{\theta JC}(t)$) for BUL45D2

PACKAGE DIMENSIONS

TO-220 CASE 221A-09 **ISSUE AH**

- NOTES:
 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. CONTROLLING DIMENSION: INCH.
- DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE

	INCHES		MILLIN	LIMETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.570	0.620	14.48	15.75	
В	0.380	0.415	9.66	10.53	
C	0.160	0.190	4.07	4.83	
D	0.025	0.038	0.64	0.96	
F	0.142	0.161	3.61	4.09	
G	0.095	0.105	2.42	2.66	
Н	0.110	0.161	2.80	4.10	
J	0.014	0.024	0.36	0.61	
K	0.500	0.562	12.70	14.27	
L	0.045	0.060	1.15	1.52	
N	0.190	0.210	4.83	5.33	
Q	0.100	0.120	2.54	3.04	
R	0.080	0.110	2.04	2.79	
S	0.045	0.055	1.15	1.39	
T	0.235	0.255	5.97	6.47	
U	0.000	0.050	0.00	1.27	
٧	0.045		1.15		
Z		0.080		2.04	

STYLE 1:

BASE PIN 1.

COLLECTOR

EMITTER 3 COLLECTOR

ON Semiconductor and the 👊 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any licensee under its patent rights of others. SCILLC products are not designed, intended, or other applications in systems in systems intended for surprised for use as components in systems instanced for surprised in systems in systems. or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada

Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center

Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative