BOURNS® - Designed for Complementary Use with the BD744 Series - 90 W at 25°C Case Temperature - 15 A Continuous Collector Current - 20 A Peak Collector Current - Customer-Specified Selections Available TO-220 PACKAGE (TOP VIEW) Pin 2 is in electrical contact with the mounting base. MDTRACA # This series is currently available, but not recommended for new designs. ## absolute maximum ratings at 25°C case temperature (unless otherwise noted) | RATING | SYMBOL | VALUE | UNIT | | |---|-------------------------------|---------------------------------------|------|---| | | BD743 | | 50 | | | Collector-base voltage (I _E = 0) | BD743A | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ | 70 | V | | | BD743B | V _{CBO} | 90 | V | | | BD743C | | 110 | | | | BD743 | | 45 | | | Collector-emitter voltage (I _B = 0) | BD743A | V | 60 | V | | | BD743B | V _{CEO} | 80 | V | | | BD743C | | 100 | | | Emitter-base voltage | V_{EBO} | 5 | V | | | Continuous collector current | I _C | 15 | Α | | | Peak collector current (see Note 1) | I _{CM} | 20 | Α | | | Continuous base current | I _B | 5 | Α | | | Continuous device dissipation at (or below) 25°C case temperature (see Note 2) | P _{tot} | 90 | W | | | Continuous device dissipation at (or below) 25°C free air temperature (see Note | P _{tot} | 2 | W | | | Unclamped inductive load energy (see Note 4) | ½Ll _C ² | 90 | mJ | | | Operating free air temperature range | T _A | -65 to +150 | °C | | | Operating junction temperature range | T _j | -65 to +150 | °C | | | Storage temperature range | T _{stg} | -65 to +150 | °C | | | Lead temperature 3.2 mm from case for 10 seconds | T _L | 250 | °C | | NOTES: 1. This value applies for $t_p \le 0.3$ ms, duty cycle $\le 10\%$. - 2. Derate linearly to 150°C case temperature at the rate of 0.72 W/°C. - 3. Derate linearly to 150°C free air temperature at the rate of 16 mW/°C. - 4. This rating is based on the capability of the transistor to operate safely in a circuit of: L = 20 mH, $I_{B(on)}$ = 0.4 A, R_{BE} = 100 Ω , $V_{BE(off)}$ = 0, R_S = 0.1 Ω , V_{CC} = 20 V. ## electrical characteristics at 25°C case temperature (unless otherwise noted) | PARAMETER | | TEST CONDITIONS | | | | MIN | TYP | MAX | UNIT | |----------------------|---|---|--|---|--|-----------------------|-----|---|------| | V _{(BR)CEO} | Collector-emitter breakdown voltage | I _C = 30 mA | I _B = 0 | (see Note 5) | BD743
BD743A
BD743B
BD743C | 45
60
80
100 | | | V | | І _{СВО} | Collector cut-off current | $V_{CE} = 70 \text{ V}$ $V_{CE} = 90 \text{ V}$ $V_{CE} = 110 \text{ V}$ $V_{CE} = 50 \text{ V}$ $V_{CE} = 70 \text{ V}$ $V_{CE} = 90 \text{ V}$ $V_{CE} = 110 \text{ V}$ | $V_{BE} = 0$
$V_{BE} = 0$ | $T_{C} = 125^{\circ}C$ $T_{C} = 125^{\circ}C$ $T_{C} = 125^{\circ}C$ $T_{C} = 125^{\circ}C$ | BD743
BD743A
BD743B
BD743C
BD743
BD743A
BD743B
BD743C | | | 0.1
0.1
0.1
0.1
5
5
5 | mA | | I _{CEO} | Collector cut-off current | $V_{CE} = 30 \text{ V}$ $V_{CE} = 60 \text{ V}$ | $I_{B} = 0$ $I_{B} = 0$ | | BD743/743A
BD743B/743C | | | 0.1
0.1 | mA | | I _{EBO} | Emitter cut-off current | V _{EB} = 5 V | I _C = 0 | | | | | 0.5 | mA | | h _{FE} | Forward current transfer ratio | ~ = | $I_{C} = 1 A$ $I_{C} = 5 A$ $I_{C} = 15 A$ | (see Notes 5 ar | nd 6) | 40
20
5 | | 150 | | | V _{CE(sat)} | Collector-emitter saturation voltage | | $I_{\rm C} = 5 {\rm A}$ $I_{\rm C} = 15 {\rm A}$ | (see Notes 5 and 6) | | | | 1
3 | V | | V_{BE} | Base-emitter voltage | V- | I _C = 5 A
I _C = 15 A | (see Notes 5 and 6) | | | | 1 3 | V | | h _{fe} | Small signal forward current transfer ratio | V _{CE} = 10 V | I _C = 1 A | f = 1 kHz | | 25 | | | | | h _{fe} | Small signal forward current transfer ratio | V _{CE} = 10 V | I _C = 1 A | f = 1 MHz | | 5 | | | | NOTES: 5. These parameters must be measured using pulse techniques, t_p = 300 μ s, duty cycle \leq 2%. ## thermal characteristics | PARAMETER | | | TYP | MAX | UNIT | |-----------------|---|--|-----|------|------| | $R_{\theta JC}$ | Junction to case thermal resistance | | | 1.4 | °C/W | | $R_{\theta JA}$ | Junction to free air thermal resistance | | | 62.5 | °C/W | ## resistive-load-switching characteristics at 25°C case temperature | | PARAMETER | TEST CONDITIONS † | | | MIN | TYP | MAX | UNIT | |----------------|--------------|--------------------------------|---------------------|------------------------------|-----|-----|-----|------| | t _d | Delay time | | | | | 20 | | ns | | t _r | Rise time | I _C = 5 A | $I_{B(on)} = 0.5 A$ | $I_{B(off)} = -0.5 A$ | | 350 | | ns | | t _s | Storage time | $V_{BE(off)} = -4.2 \text{ V}$ | $R_L = 6 \Omega$ | $t_p = 20 \mu s, dc \le 2\%$ | | 500 | | ns | | t _f | Fall time | | | | | 400 | | ns | [†] Voltage and current values shown are nominal; exact values vary slightly with transistor parameters. ^{6.} These parameters must be measured using voltage-sensing contacts, separate from the current carrying contacts. ## **TYPICAL CHARACTERISTICS** # TYPICAL DC CURRENT GAIN VS COLLECTOR CURRENT TCS637AA TC = 125° C Tc = 25° C Tc = -55° -5 Figure 1. ## **COLLECTOR-EMITTER SATURATION VOLTAGE** Figure 2. ## **BASE-EMITTER VOLTAGE** Figure 3. ## **MAXIMUM SAFE OPERATING REGIONS** ## THERMAL INFORMATION ### **MAXIMUM POWER DISSIPATION** ## PRODUCT INFORMATION