

QUAD SINGLE-SUPPLY OPERATIONAL AMPLIFIER

■ GENERAL DESCRIPTION

The NJM2902 consists of four independent high-gain operational amplifiers that are designed for single-supply operation.

Operation from split power supplies is also possible and the low power supply drain is independent of the magnitude of the power supply voltage.

Used with a dual supply the circuit will operate over a wide range of supply voltages. However, a large amount of crossover distortion may occur with loads to ground. An external current-sinking resistor to- V_S will reduce crossover distortion.

There is no crossover distortion problem in single-supply operation if the load is direct-coupled to ground.

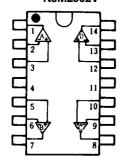
■ FEATURES

- Single Supply
- Operating Voltage

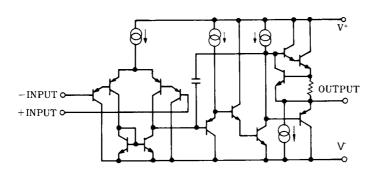
 High Output Voltage
 Slew Rate
 Low Operating Current
 (+3V~+32V)
 (V⁺-2V)
 (0.5V/µs typ.)

 (1mA typ.)
- Package Outline
 DIP14, DMP14, SSOP14
- Bipolar Technology

■ PACKAGE OUTLINE


NJM2902N

NJM2902M


■ PIN CONFIGURATION

NJM2902N, NJM2902M NJM2902V

PIN FUNCTION	
1.A OUTPUT	8.C OUTPUT
2.A -INPUT	9.C -INPUT
3.A +INPUT	10.C +INPUT
4.V ⁺	11.V
5.B +INPUT	12.D +INPUT
6.B -INPUT	13.D -INPUT
7.B OUTPUT	14.D OUTPUT

■ EQUIVALENT CIRCUIT (1/4 Shown)

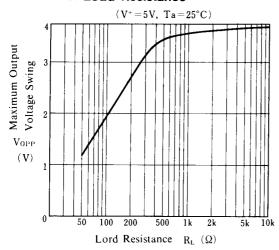
■ ABSOLUTE MAXIMUM RATINGS

(Ta=25°C)

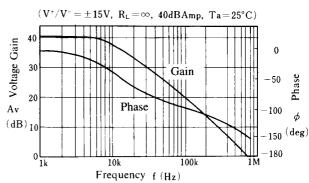
PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺ (V ⁺ /V ⁻)	32 (or ± 16)	V
Differential Input Voltage	V_{ID}	32	V
Input Voltage	V _{IC}	-0.3~ 32(Note2)	V
Power Dissipation	P _D	(DIP14) 570 (DMP14) 300	mW
		(SSOP14)300	
Operating Temperature Range	T _{opr}	-40~+85	°C
Storage Temperature Range	T _{stg}	-50~+125	°C

⁽Note1) Continuous short-circuits from output to GND is guaranteed only when V+ \leq 15V.

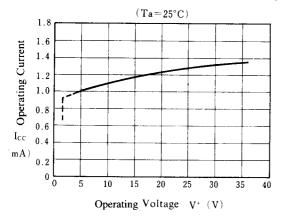
■ ELECTRICAL CHARACTERISTICS

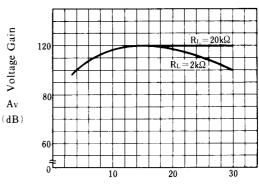

 $(Ta=25^{\circ}C,V^{+}=5V)$

PARAMETER	SYMBOL	TEST CONDITION	MIN.	TYP.	MAX.	UNIT
Input Offset Voltage	V _{IO}	$R_S=0\Omega$	-	2	10	mV
Input Offset Current	I _{IO}	I _{IN} ⁺ -I _{IN} ⁻	-	5	50	nA
Input Bias Current	I_{B}	l _{IN} ⁺ or l _{IN} ⁻	-	20	500	nA
Large Signal Voltage Gain	A_{V}	R _L >2kΩ	-	100	-	V/mV
Maximum Output Voltage Swing	V_{OPP}	$R_L=2k\Omega$	3.5	-	-	V
Input Common Mode Voltage Range	V_{ICM}		0~3.5	-	-	V
Common Mode Rejection Ratio	CMR		-	85	-	dB
Supply Voltage Rejection Ratio	SVR		-	100	-	dB
Output Source Current	ISOURCE	$V_{IN}^{+}=1V, V_{IN}^{-}=0V$	20	40	-	mA
Output Sink Current	I _{SINK}	$V_{IN}^{+}=0V, V_{IN}^{-}=1V$	8	20	-	mA
Channel Separation	CS	f=1k~20kHz,Input Referred	-	120	-	dB
Operating Current	Icc	R _L =∞		1	2	mA
Slew Rate	SR	V ⁺ /√=±15V	-	0.5	-	V/µs
Gain Bandwidth Product	GB	V ⁺ /√=±15V	-	0.5	-	MHz

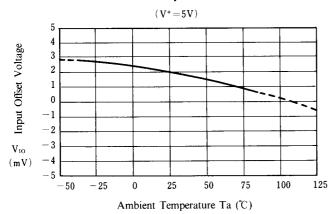

⁽Note2) For supply voltage less than 32V[±16], the absolute maximum input voltage is equal to supply voltage.

■ TYPICAL CHARACTERISTICS

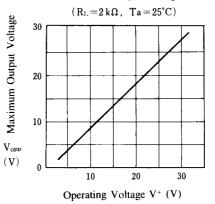

Maximum Output Voltage Swing vs. Load Resistance


Voltage Gain, Phase vs. Frequency

Operating Current vs. Operating Voltage

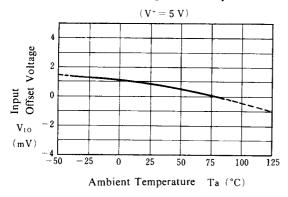


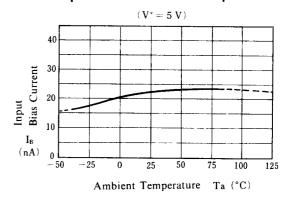
Voltage Gain vs. Operating Voltage



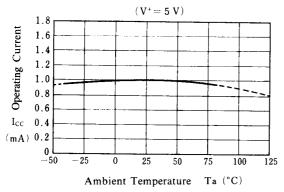
Operating Voltage V+ (V)

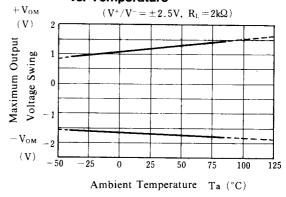
Input Offset Voltage vs. Temperature

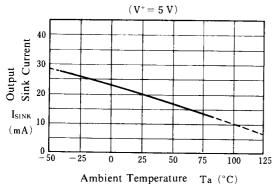

Maximum Output Voltage vs. Operating Voltage

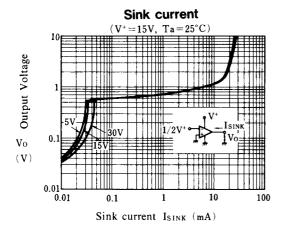

Voltage Gain

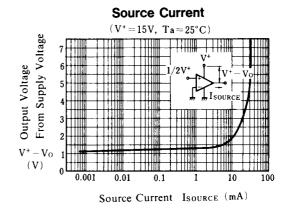
■ TYPICAL CHARACTERISTICS


Input Offset Voltage vs. Temperature

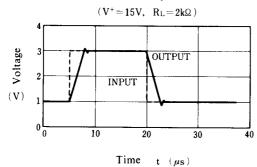

Input Bias Current vs. Temperature


Operating Current vs. Temperature

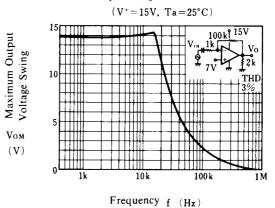

Maximum Output Voltage Swing vs. Temperature



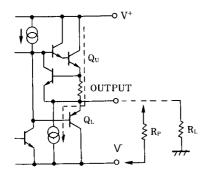
Output Sink Current vs. Temperature



■ TYPICAL CHARACTERISTICS



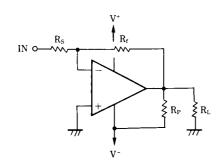
Pulse Response

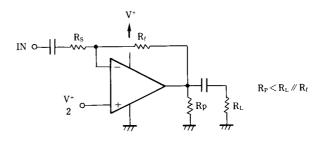


Maximum Output Voltage Swing vs. Frequenccy

■ APPLICATION

Improvement of Cross-over Distortion Equivalent circuit at the output stage




NJM2902,in its static state (No in and output condition) when design, Q_{U} being biassed by constant current (break down beam) yet, Q_{L} stays OFF.

While using with both power source mode, the cross-over distortion might occur instantly when Q_I ON.

There might be cases when application for amplifier of audio signals, not only distortion but also the apparent frequency bandwidth being narrowed remarkably.

It is adjustable especially when using both power source mode, constantly to use with higher current on Q_U than the load current (including feedback current), and then connect the pull-down resister R_P at the part between output and V pins.

[CAUTION]

The specifications on this databook are only given for information, without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.