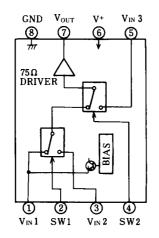


3 - INPUT VIDEO SUPER IMPOSER WITH 75 Ω DRIVER

■ GENERAL DESCRIPTION

NJM2264 is 3-input, 1-output video switch with 75Ω driver circuit. One input is provided with sink chip clamp function, which adjusts the DC level of video signal. The other two inputs of transistor open base can make control of luminance signal. This video switch can be connected to TV monitor directly, as it has 75Ω driver circuit internally.

NJM2264 is a high performance video switch which is operated with 5V supply voltage.


■ FEATURES

- Wide Operating Voltage (4.75V to 13V)
- 3 Input 1-Output
- Internal 75Ω Driver Circuit
- Internal Sink Chip Clamp Function (V_{IN}1)
- Internal Luminance Signal Control Function (V_{IN}2, V_{IN}3)
- Crosstalk 70dB(at 4.43MHz)
- Wide Operating Frequency Range 10MHz (2V_{P-P} input)
- Package Outline DIP8, DMP8, SIP8
- Bipolar Technology

■ APPLICATIONS

• VCR, Video Camera, AV-TV, Video Disc Player.

■ BLOCK DIAGRAM

■ PACKAGE OUTLINE

NJM2264D

NJM2264M

NJM2264L

NJM2264

■ ABSOLUTE MAXIMUM RATINGS

 $(T_a=25^{\circ}C)$

PARAMETER	SYMBOL	RATINGS	UNIT
Supply Voltage	V ⁺	15	V
Power Dissipation	P_D	(DIP8) 500	mW
		(DMP8) 300	mW
		(SIP8) 800	mW
Operating Temperature Range	T _{opr}	-20 to +75	°C
Storage Temperature Range	T_{stg}	-40 to +125	°C

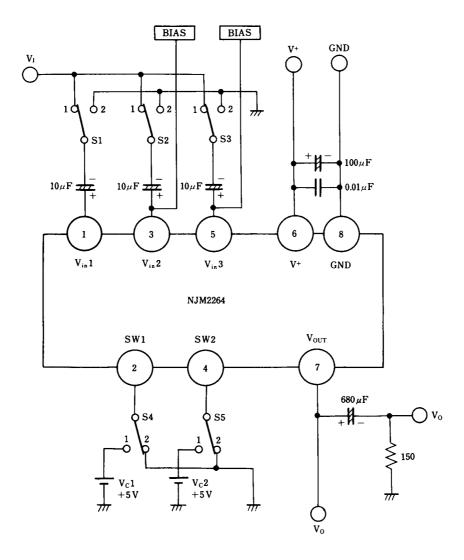
■ ELECTRICAL CHARACTERISTICS

 $(V^{+}=5V, T_{a}=25^{\circ}C\pm 2^{\circ}C)$

PARAMETERS	SYMBOLS	TEST CONDITIONS	MIN.	TYP.	MAX.	UNIT
Recommended Supply Voltage	V ⁺		4.75	-	13.0	V
Operating Current	Icc	S1 = S2 = S3 = S4 = S5 = 2	-	16.5	23.0	mA
Voltage Gain	G _V	$V_{IN} = 2.0V_{P-P}$, 100kHz, V_O / V_I	-0.8	-0.3	+0.2	dB
Frequency Characteristics	Gf	$V_{IN} = 2.0V_{P-P}, V_O (10MHz) / V_O (100kHz)$	-1.0	0	+1.0	dB
Differential Gain	DG	V_{IN} = 2.0V _{P-P} , Staircase, R _L = 150 Ω	-	0.3	-	%
Differential Phase	DP	V_{IN} = 2.0V _{P-P} , Staircase, R _L = 150 Ω	-	0.3	-	deg
		V _I = 2.0V _{P-P} , 4.43MHz	-	-	-	-
Crosstalk	CT	V _O /V _I	-	-70	-	dB
		V _{IN} 2 V _{IN} 3 Biased (Note 2)	-	-	-	-
Switch Change Voltage	V_{CH}	Switch High Level Voltage	2.4	-	-	V
	V_{CL}	Switch Low Level Voltage	-	-	0.8	V

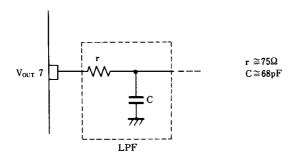
Note 1) Unless otherwise specified, tested with the following conditions.

■ SWITCH CONTROL SIGNAL - OUTPUT SIGNAL


SW1	SW2	OUTPUT SIGNAL
L	L	V _{IN} 1
Н	L	V _{IN} 2
L/H	Н	V _{IN} 3

a) S1 = 1, S2 = S3 = S4 = S5 = 2 b) S2 = S4 = 1, S1 = S3 = S5 = 2 c) S3 = S5 = 1, S1 = S2 = 1, S4 = 1 and 2

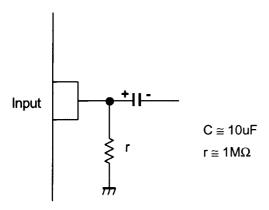
Note 2) Tested with the following conditions.


a) S1 = S4 = 1, S2 = S3 = 2, S5 = 1 and 2 b) S2 = 1, S1 = S3 = S4 = 2, S5 = 1 and 2 c) S3 = 1, S1 = S2 = S5 = 2, S4 = 1 and 2 Note 3) The Clamp Input Voltage of Vin is approximately $(2.0 \times V^{\dagger}) / 5$ (In case of $V^{\dagger} = 5V$, about 2.0V).

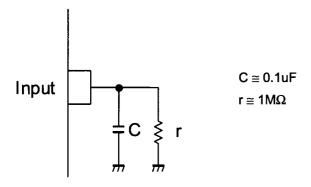
■ TEST CIRCUIT

■ APPLICATION

Oscillation Prevention on light loading conditions Recommended under circuit.


NJM2264

■ EQUIVALENT CIRCUIT


■ EQUIVAL	ENT CIRCUI	<u> </u>			
PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT	PIN NO.	PIN FUNCTION	INSIDE EQUIVALENT CIRCUIT
1	V _{IN} 1	V _{IN} 1 ≥ 200 Ω 200 Ω	5	V _{IN} 3	V ⁺ V _{IN} 3 200 Ω
2	SW1	2 kΩ \$13	6	∨⁺	
3	V _{IN} 2	V+ V _{IN} 2 200\$\text{200}	7	Vouт	200 Ω V _{OUT}
4	SW2	2 kΩ 3 13 kΩ 13 kΩ 200 Ω 9 kΩ	8	GND	

■ APPLICATION

This IC requires $1M\Omega$ resistance between INPUT and GND pin for clamp type input since the minute current causes an unstable pin voltage.

This IC requires 0.1uF capacitor between INPUT and GND, $1M\Omega$ resistance between INPUT and GND for clamp type input at mute mode.

[CAUTION]

The specifications on this databook are only given for information , without any guarantee as regards either mistakes or omissions. The application circuits in this databook are described only to show representative usages of the product and not intended for the guarantee or permission of any right including the industrial rights.