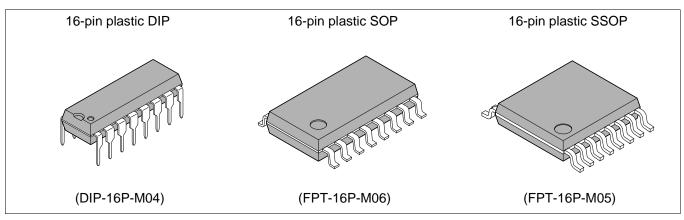
Linear IC General purpose Converter смоз

D/A Converter for Digital Tuning (8 channels. 8-bit, with OP amplifier)

MB88347

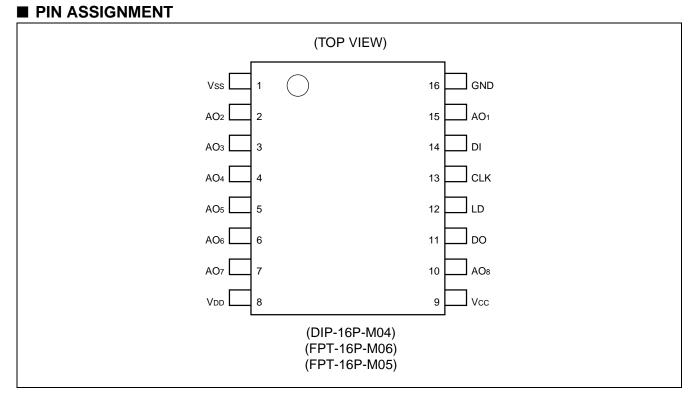
DESCRIPTION


The MB88347 features 8 channels of 8-bit D/A converters (with output amplifiers). The output amplifier provides high current drive capability. As data is input via a serial link, only three control lines are required, and cascaded connections can be used.

The MB88347 is suitable for electronic volumes and replacement for potentiometers for adjustment, in addition to normal D/A converter applications.

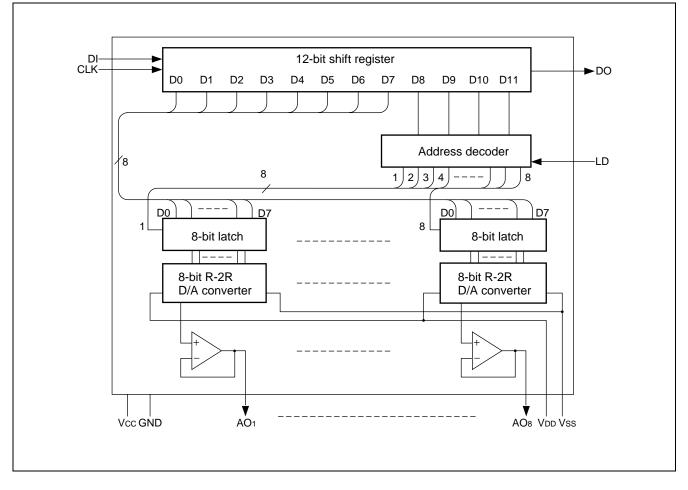
FEATURES

- Low power consumption (2 mW/ch)
- Small package
- Integrating 8 channels of R-2R type 8-bit D/A converter.


(Continued)

PACKAGES

- Built-in analog output amplifier (Max +1.0 mA sink/source current)
- Analog output range : 0 to $V \mbox{cc}$
- The range of D/A conversion can be independently set by separated the power supply for MCU interface and OP amplifier and the power supply for D/A converter.
- Capable of being controlled directly by a 3-V MCU (input voltage : "H" = 0.5 V cc, "L" = 0.2 V cc)
- Serial data input, 2.5 MHz operation
- CMOS process
- Package lineup : DIP 16-pin, SOP 16-pin, SSOP 16-pin



■ PIN DESCRIPTION

Pin No.	Symbol	I/O	Pin name	Function				
14	DI*	I	Data input pin	Serial data input pin. This pin inputs 12-bit length serial data.				
11	DO	0	Data output pin	This pin outputs MSB bit data of 12-bit shift register.				
13	CLK*	I	Shift clock input pin	Shift clock input pin. The input signal from the DI pin is inputted to a 12-bit shift register on the rising edge of the shift clock.				
12	LD*	I	Load signal input pin	If input "H" level to LD pin, the data of shift register is loaded to the decoder and the register for D/A output.				
15	AO ₁							
2	AO ₂							
3	AO ₃							
4	AO ₄	0	D/A output pin	These pins are 8-bit D/A output with OP amplifier.				
5	AO ₅	Ũ	Dirtouput pill					
6	AO ₆							
7	AO7							
10	AO ₈							
9	Vcc		Power supply pin	Power supply pin of MCU interface and OP amplifier				
16	GND		Ground pin	Ground pin of MCU interface and OP amplifier				
8	Vdd		Power supply pin	Power supply pin of D/A converter				
1	Vss		Ground pin	Ground pin of D/A converter				

* : DI, CLK, and LD pins are fixed to "L" level at non transfer.

BLOCK DIAGRAM

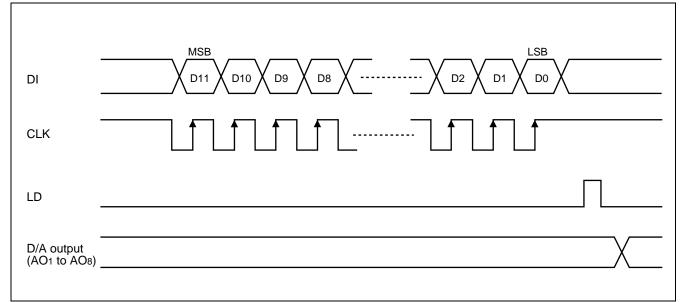
■ DATA FOR CHIP CONTROL

1. Data for Shift Register

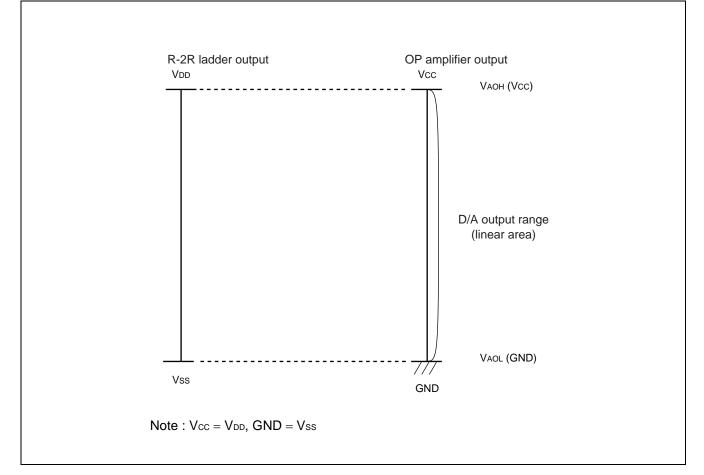
- MB88347 has 12-bit shift register for chip control.
- It is necessary to set the data as following configuration to 12-bit shift register.
- The data consists of 12 bits: a 4-bit address selection and an 8-bit D/A converter control signal.

Last LSB) —											First – (MSB
D0	D1	D2	D3	D4	D5	D6	D7	D8	D9	D10	D11
4	D/A converter control signal → Address selected signal →										

2. D/A Converter Control Signal


			Input da	ta signal				D/A converter output voltage
D0	D1	D2	D3	D4	D5	D6	D7	DIA converter output voltage
0	0	0	0	0	0	0	0	≑ Vss
1	0	0	0	0	0	0	0	≑ V _{LB} + V _{SS}
0	1	0	0	0	0	0	0	$\Rightarrow V_{LB} \times 2 + V_{SS}$
5	5	5	5	S	S	5	5	5
0	1	1	1	1	1	1	1	$\Rightarrow V_{LB} \times 254 + V_{SS}$
1	1	1	1	1	1	1	1	≑ V _{DD}

 $V_{LB} = (V_{DD} - V_{SS}) / 255$


3. Address Selected Signal

	Input da	ta signal		Address selected
D8	D9	D10	D11	- Address selected
0	0	0	0	Don't Care
0	0	0	1	AO1 selected
0	0	1	0	AO ₂ selected
0	0	1	1	AO ₃ selected
0	1	0	0	AO ₄ selected
0	1	0	1	AO₅ selected
0	1	1	0	AO6 selected
0	1	1	1	AO7 selected
1	0	0	0	AO ₈ selected
1	0	0	1	Don't Care
1	0	1	0	Don't Care
1	0	1	1	Don't Care
1	1	0	0	Don't Care
1	1	0	1	Don't Care
1	1	1	0	Don't Care
1	1	1	1	Don't Care

■ TIMING CHART AT DATA SETTING

■ ANALOG OUTPUT VOLTAGE RANGE

ABSOLUTE MAXIMUM RATINGS

Parameter	Symbol	Condition	Rat	Unit		
Farameter	Symbol	Condition	Min	Max	Onic	
Dowor oupply voltage	Vcc		- 0.3	+ 7.0	V	
Power supply voltage	Vdd	The case that GND is reffered.	- 0.3*	+ 7.0*	V	
Input voltage	Vin	Ta = +25 °C	- 0.3	Vcc + 0.3	V	
Output voltage	Vout		- 0.3	Vcc + 0.3	V	
Power consumption	PD			250	mW	
Operating temperature	Та		- 40	+ 85	°C	
Storage temperature	Tstg	—	- 55	+ 150	°C	

* : $V_{\text{CC}} \geq V_{\text{DD}}$

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

RECOMMENDED OPERATING CONDITIONS

Parameter	Symbol	Condition	Va	Unit	
Farameter	Symbol	Condition	Min	Max	Onit
Power supply Veltage 1	Vcc		4.5	5.5	V
Power supply Voltage 1	GND			0	V
Power supply Veltage 2	Vdd	$V_{DD} - V_{SS} > 2.0 V$	2.0	Vcc	V
Power supply Voltage 2	Vss	v DD - v SS \geq 2.0 v	GND	Vcc - 2.0	V
Analog output source current	AL		_	1.0	mA
Analog output sink current	Іан	—		1.0	mA
Oscillation limited output capacitance	Col	—		1.0	μF
Digital data setting range	—		#00	#FF	—
Operating temperature	Та	—	- 40	+ 85	°C

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

ELECTRICAL CHARACTERISTICS

1. DC Characteristics

(1) Digital block

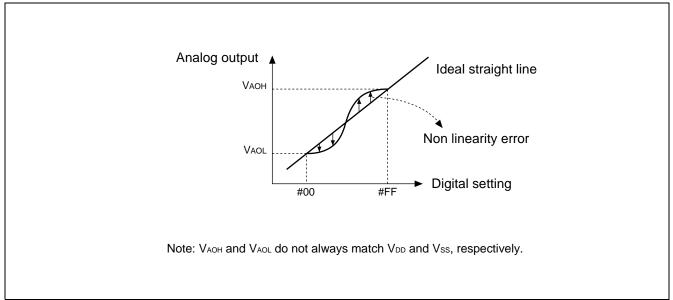
(VDD, VCC = $+5 \text{ V} \pm 10\%$ (VCC \geq VDD), GND, VSS = 0 V, Ta = -40 °C to + 85 °C)

Deremeter	Symbol	Dinnomo	Conditions		Value		Unit	
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	
Power supply voltage	Vcc			4.5	5.0	5.5	V	
		Vcc	At CLK = 1 MHz operating (at no load) At Ta = -20 °C to $+85$ °C		0.8	1.8	mA	
Power supply current	Icc		At CLK = 1 MHz operating (at no load) At Ta = -40 °C to $+85$ °C		0.8	2.1	IIIA	
Input leakage current	Iilk	CLK	VIN = 0 to Vcc	-10		10	μA	
"L" level input voltage	VIL	DI				0.2 Vcc	V	
"H" level input voltage	Vін	LD		0.5 Vcc		—	V	
"L" level output voltage	Vol	DO	lo∟ = 2.5 mA			0.4	V	
"H" level output voltage	Vон		Іон = - 400 µА	Vcc-0.4			V	

Note : IoL and IoH are output load current.

(2) Analog block

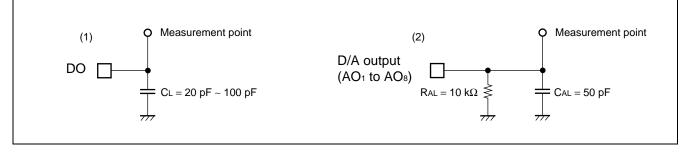
Paramatar	Symbol	Din nome	Conditions		Value		l In:4
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit
Consumption current	DD	Vdd	No load		1.0	1.5	mA
Analog power	Vdd	Vdd	$V_{DD} - V_{SS} \ge 2.0 \text{ V}$	2.0		Vcc	V
supply voltage	Vss	Vss	$VDD = VSS \ge 2.0 V$	GND		Vcc-2.0	V
Resolution	Res			—	8		bit
Monotonic increase	Rem	AO₁ to		_	8		bit
Non linearity error*1	LE	AO1 to AO8	No load V _{DD} ≤ Vcc − 0.1 V	-1.5		1.5	LSB
Differential linearity error* ²	Dle		$V_{ss} \ge 0.1 V$	-1.0		1.0	LSB
Output minimum voltage 1	VAOL1		$V_{DD} = V_{CC}$ $V_{SS} = GND = 0.0 V$ $I_{AL} = 0 \mu A$ Digital data = #00	Vss		Vss + 0.1	V
Output minimum voltage 2	VAOL2		$V_{DD} = V_{CC} = 5.0 V$ $V_{SS} = GND = 0.0 V$ $I_{AL} = 500 \mu A$ $Digital data = #00$	Vss - 0.2	Vss	Vss + 0.2	V
Output minimum voltage 3	Vaol3	AO1 to AO8	$V_{DD} = V_{CC} = 5.0 V$ $V_{SS} = GND = 0.0 V$ $I_{AH} = 500 \mu A$ $Digital data = #00$	Vss		Vss + 0.2	V
Output minimum voltage 4	VAOL4		$V_{DD} = V_{CC} = 5.0 V$ $V_{SS} = GND = 0.0 V$ $I_{AL} = 1.0 mA$ Digital data = #00	Vss - 0.3	Vss	Vss + 0.3	V
Output minimum voltage 5	V _{AOL5}		$V_{DD} = V_{CC} = 5.0 V$ $V_{SS} = GND = 0.0 V$ $I_{AH} = 1.0 mA$ Digital data = #00	Vss		Vss + 0.3	V

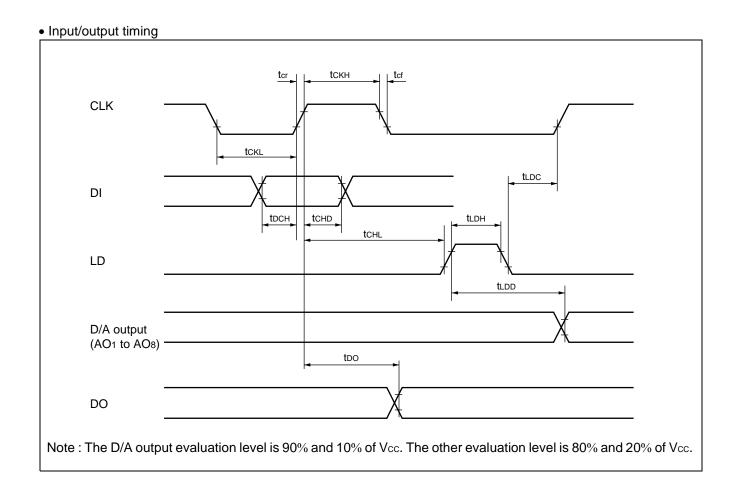

(Continued)

Deremeter.	Symphol	Dinnerse	Conditions		Value		Unit
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit
Output maximum voltage 1	VAOH1		$\label{eq:VDD} \begin{array}{l} V_{DD} = V_{CC} \\ V_{SS} = GND = 0.0 \ V \\ I_{AL} = 0 \ \mu A \\ Digital \ data = \#FF \end{array}$	Vdd - 0.1		Vdd	V
Output maximum voltage 2	Vaoh2		$\label{eq:VD} \begin{array}{l} V_{DD} = V_{CC} = 5.0 \ V \\ V_{SS} = GND = 0.0 \ V \\ I_{AL} = 500 \ \mu A \\ Digital \ data = \#FF \end{array}$	V _{DD} - 0.2		Vdd	V
Output maximum voltage 3	Vаонз	AO1 to AO8	$\label{eq:VDD} \begin{array}{l} V_{DD} = V_{CC} = 5.0 \ V \\ V_{SS} = GND = 0.0 \ V \\ I_{AH} = 500 \ \mu A \\ Digital \ data = \#FF \end{array}$	Vdd - 0.2	Vdd	V _{DD} + 0.2	V
Output maximum voltage 4	Vaoh4		$V_{DD} = V_{CC} = 5.0 V$ $V_{SS} = GND = 0.0 V$ $I_{AL} = 1.0 mA$ $Digital data = #FF$	Vdd - 0.3		Vdd	V
Output maximum voltage 5	Vaoh5		$V_{DD} = V_{CC} = 5.0 V$ $V_{SS} = GND = 0.0 V$ $I_{AH} = 1.0 mA$ Digital data = #FF	V _{DD} - 0.3	Vdd	Vdd + 0.3	V

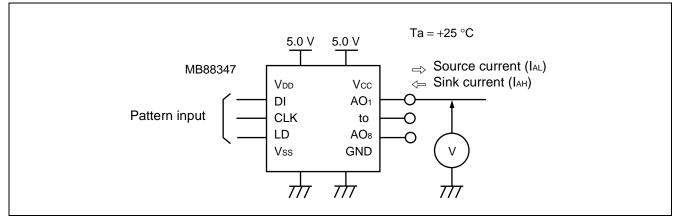
 $(V_{DD}, V_{CC} = +5 V \pm 10\% (V_{CC} \ge V_{DD}), GND, V_{SS} = 0 V, Ta = -40 \text{ }^{\circ}C \text{ to } +85 \text{ }^{\circ}C)$

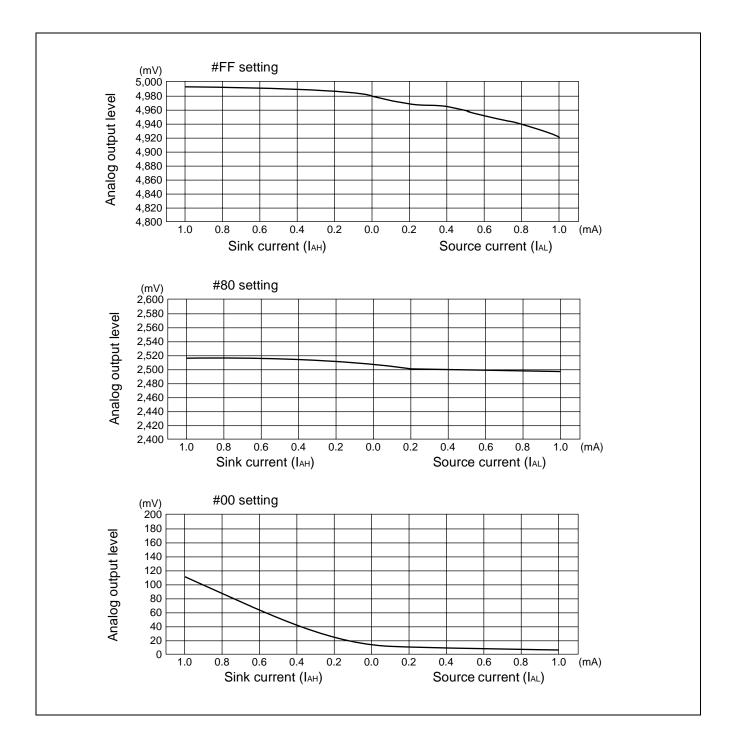
*1 : Non linearity error : The error of the I/O curve from the ideal straight line between output voltages at "00" and "FF".


*2 : Differential linearity error : The error from the ideal increment given when the digital value is incremented by one bit.

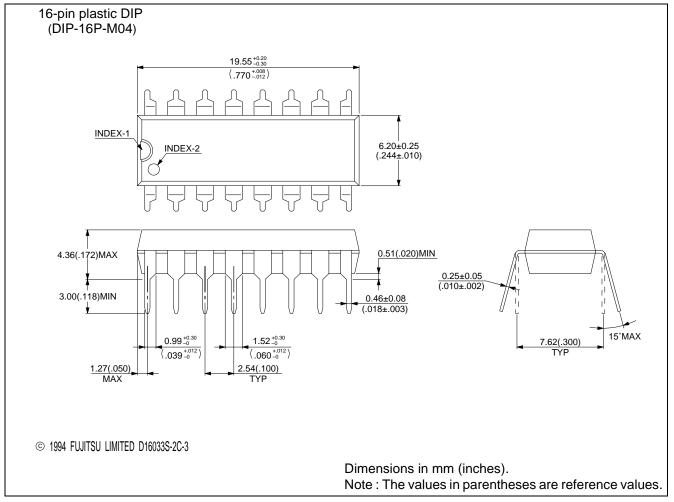


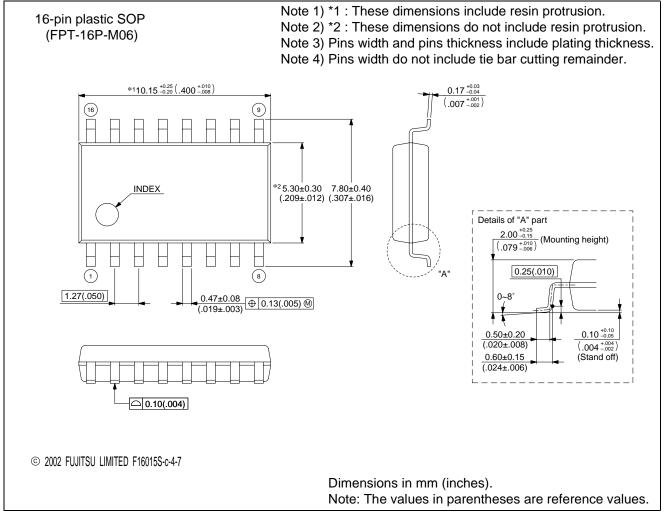
2. AC Characteristics

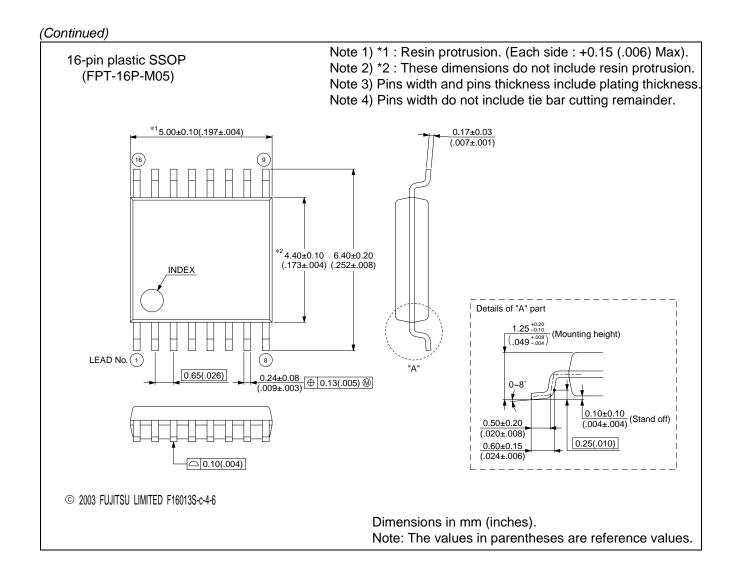

	(VDD, VCC = $+$	5 V \pm 10% (Vcc \geq Vdd) , GND, $^{\prime}$	Vss = 0 V, Ta	$n = -40 ^{\circ}\mathrm{C} \mathrm{to}$	o + 85 °C)
Parameter	Symbol	Conditions	Va	lue	Unit
Falameter	Symbol	Conditions	Min	Мах	Onit
"L" level clock pulse width	tск∟	—	200		ns
"H" level clock pulse width	tскн	—	200		ns
Clock rising time Clock falling time	tcr tcf	_		200	ns
Data setup time	tрсн	—	30		ns
Data hold time	tснр	—	60		ns
Load setup time	tcн∟	—	200	—	ns
Load hold time	tLDC	—	100		ns
"H" level load pulse width	t ldh	—	100	—	ns
Data output delay time	too	Refer to "Load condition (1) ".	70	350	ns
D/A output settling time	tldd	Refer to "Load condition (2) ".		100	μS


Load condition

■ EXAMPLE CHARACTERISTIC of Vao - Iao






■ ORDERING INFORMATION

Part No.	Package	Remarks
MB88347P	16-pin plastic DIP (DIP-16P-M04)	
MB88347PF	16-pin plastic SOP (FPT-16P-M06)	
MB88347PFV	16-pin plastic SSOP (FPT-16P-M05)	

■ PACKAGE DIMENSIONS

FUJITSU MICROELECTRONICS LIMITED

Shinjuku Dai-Ichi Seimei Bldg. 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan Tel: +81-3-5322-3347 Fax: +81-3-5322-3387 http://jp.fujitsu.com/fml/en/

For further information please contact:

North and South America

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://www.fma.fujitsu.com/

Europe

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 KOSMO TOWER, 1002 Daechi-Dong, Kangnam-Gu,Seoul 135-280 Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://www.fmk.fujitsu.com/

Asia Pacific

FUJITSU MICROELECTRONICS ASIA PTE LTD. 151 Lorong Chuan, #05-08 New Tech Park, Singapore 556741 Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm.3102, Bund Center, No.222 Yan An Road(E), Shanghai 200002, China Tel: +86-21-6335-1560 Fax: +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road Tsimshatsui, Kowloon Hong Kong Tel: +852-2377-0226 Fax: +852-2376-3269 http://cn.fujitsu.com/fmc/tw

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in

nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.