8-bit Microcontrollers

CMOS

F²MC-8FX MB95350L Series

MB95F352E/F352L/F353E/F353L/F354E/F354L

■ DESCRIPTION

MB95350L is a series of general-purpose, single-chip microcontrollers. In addition to a compact instruction set, the microcontrollers of this series contain a variety of peripheral resources. Note: F²MC is the abbreviation of FUJITSU Flexible Microcontroller.

■ FEATURES

• F²MC-8FX CPU core

Instruction set optimized for controllers

- Multiplication and division instructions
- 16-bit arithmetic operations
- Bit test branch instructions
- Bit manipulation instructions, etc.
- Clock
 - Selectable main clock source Main OSC clock (up to 16.25 MHz, maximum machine clock frequency: 8.125 MHz) External clock (up to 32.5 MHz, maximum machine clock frequency: 16.25 MHz) Main CR clock (1/8/10/12.5 MHz ±2%, maximum machine clock frequency: 12.5 MHz)
 - Selectable subclock source Sub-OSC clock (32.768 kHz) External clock (32.768 kHz) Sub-CR clock (Typ: 100 kHz, Min: 50 kHz, Max: 200 kHz)
- Timer
 - 8/16-bit composite timer × 2 channels
 - Time-base timer × 1 channel
 - Watch prescaler × 1 channel
- UART/SIO \times 1 channel (The channel can be used either as a UART/SIO channel or as an I²C channel.)
 - Alternative selection of UART/SIO
 - Full duplex double buffer
 - Capable of clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer

(Continued)

For the information for microcontroller supports, see the following website.

http://edevice.fujitsu.com/micom/en-support/

(Continued)

- I²C × 2 channels (One of the two channels can be used either as an I²C channel or as a UART/SIO channel.)
 - Supports Standard-mode and Fast-mode (400 kHz)
 - Built-in wake-up function
- LIN-UART
 - Full duplex double buffer
 - Capable of clock-synchronous serial data transfer and clock-asynchronous serial data transfer
- External interrupt \times 6 channels
 - Interrupt by edge detection (rising edge, falling edge, and both edges can be selected)
 - Can be used to wake up the device from different low power consumption (standby) modes
- 8/10-bit A/D converter × 6 channels
 - 8-bit and 10-bit resolution can be chosen.
- Low power consumption (standby) modes
 - Stop mode
 - Sleep mode
 - Watch mode
 - Time-base timer mode
- I/O port
 - MB95F352L/F353L/F354L (maximum no. of I/O ports: 21) General-purpose I/O ports (N-ch open drain) : 3 General-purpose I/O ports (CMOS I/O) : 18
 - MB95F352E/F353E/F354E (maximum no. of I/O ports: 22) General-purpose I/O ports (N-ch open drain) : 3 General-purpose I/O ports (CMOS I/O) : 18
 - General-purpose input port (CMOS input) : 1
- On-chip debug
 - 1-wire serial control
 - Serial writing supported (asynchronous mode)
- Hardware/software watchdog timer
 - Built-in hardware watchdog timer
 - Built-in software watchdog timer
- Low-voltage detection reset and interrupt circuit
 - Built-in low-voltage detector
- Clock supervisor counter
 - Built-in clock supervisor counter function
- Programmable port input voltage level
 - CMOS input level / hysteresis input level
- Dual operation Flash memory
 - The erase/write operation and the read operation can be executed in different banks (upper bank/lower bank) simultaneously.
- Flash memory security function
 - · Protects the content of the Flash memory

FUĴITSU

■ PRODUCT LINE-UP

Part number										
Parameter	MB95F352E	MB95F353E	MB95F354E	MB95F352L	MB95F353L	MB95F354L				
Type		Flash memory product								
Clock										
supervisor counter	It supervises th	supervises the main clock oscillation.								
Program ROM capacity	8 Kbyte	12 Kbyte	20 Kbyte	8 Kbyte	12 Kbyte	20 Kbyte				
RAM capacity	240 bytes	496 bytes	496 bytes	240 bytes	496 bytes	496 bytes				
Low-voltage detection reset		Yes			No					
Reset input		ted through sof			Dedicated					
CPU functions	Number of basi Instruction bit le Instruction leng Data bit length Minimum instru Interrupt proces	ength th iction execution								
General- purpose I/O	CMOS I/O: 18	I/O ports (Max): 22I/O ports (Max): 21CMOS I/O: 18CMOS I/O: 18N-ch open drain: 3N-ch open drain: 3								
Time-base timer	Interrupt cycle:	0.256 ms to 8.3	3 s (when exteri	nal clock = 4 MH	Hz)					
Hardware/ software watchdog timer		llation clock at 1	I0 MHz: 105 ms as the source	s (Min) clock of the har	dware watchdo	g timer.				
Wild register	It can be used t	to replace three	bytes of data.							
LIN-UART	Clock-synchror enabled.	nous serial data	transfer and clo	e selected by a ock-asynchrono r or a LIN slave.	us serial data tr					
8/10-bit A/D	6 channels									
converter	8-bit resolution	and 10-bit reso	lution can be cl	nosen.						
	2 channels									
8/16-bit composite timer	The timer can be configured as an "8-bit timer x 2 channels" or a "16-bit timer x 1 channel" It has built-in timer function, PWC function, PWM function and input capture function. Count clock: it can be selected from internal clocks (seven types) and external clocks. It can output square wave.									
Extornal	6 channels									
External interrupt		Interrupt by edge detection (The rising edge, falling edge, or both edges can be selected.) It can be used to wake up the device from different standby modes.								
On-chip debug	1-wire serial co It supports seria		chronous mode)						

Part number									
	MB95F352E	MB95F353E	MB95F354E	MB95F352L	MB95F353L	MB95F354L			
Parameter									
`	1 channel (The channel can be used either as a UART/SIO channel or as an I ² C channel.)								
UART/SIO	Data transfer with UART/SIO is enabled. It has a full duplex double buffer, variable data length (5/6/7/8 bits), a built-in baud rate generator and an error detection function. It uses the NRZ type transfer format. LSB-first data transfer and MSB-first data transfer are available to use. Clock-asynchronous (UART) serial data transfer and clock-synchronous (SIO) serial data transfer is enabled.								
	2 channels (On channel.)	e of the two cha	annels can be us	ed either as an	I ² C channel or a	as a UART/SIO			
I²C	Master/slave transmission and receiving It has the following functions: • bus error function								
-	arbitration function								
	 transmission 		tion function						
	 wake-up func 	tion							
	 functions of g 	enerating and o	detecting repeat	ed START cond	ditions.				
Watch prescaler	Eight different t	ime intervals ca	an be selected.						
	It supports auto	matic program	ming, Embedde	d Algorithm,					
	write/erase/eras								
Flash memory	•	It has a flag indicating the completion of the operation of Embedded Algorithm.							
,	Number of write/erase cycles: 100000								
Data retention time: 20 years									
Standby mode		Flash security feature for protecting the content of the Flash memory Sleep mode, stop mode, watch mode, time-base timer mode							
		op mode, walci	-						
Package			–	P-M34 P-M10					
i achaye				2P-M19					

■ PACKAGES AND CORRESPONDING PRODUCTS

Part number Package	MB95F352E	MB95F353E	MB95F354E	MB95F352L	MB95F353L	MB95F354L
FPT-24P-M34	0	0	0	0	0	0
FPT-24P-M10	0	0	0	0	0	0
LCC-32P-M19	0	0	0	0	0	0

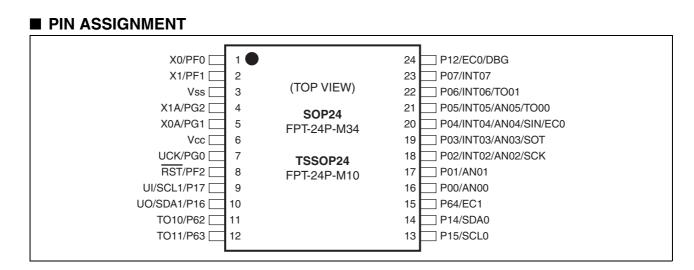
O: Available

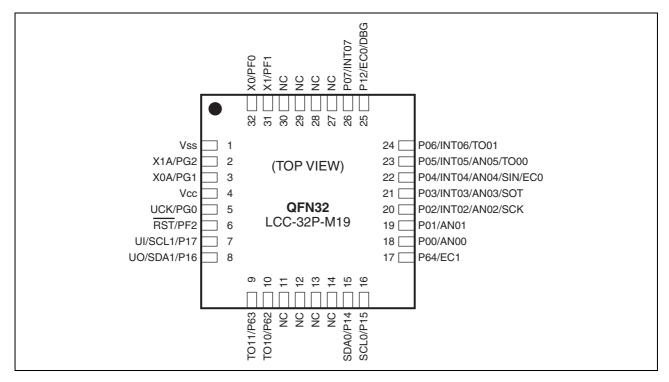
■ DIFFERENCES AMONG PRODUCTS AND NOTES ON PRODUCT SELECTION

• Current consumption

When using the on-chip debug function, take account of the current consumption of flash erase/write. For details of current consumption, see "■ ELECTRICAL CHARACTERISTICS".

Package


For details of information on each package, see "■ PACKAGES AND CORRESPONDING PRODUCTS" and "■ PACKAGE DIMENSIONS".


Operating voltage

The operating voltage varies, depending on whether the on-chip debug function is used or not. For details of the operating voltage, see "■ ELECTRICAL CHARACTERISTICS".

On-chip debug function

The on-chip debug function requires that Vcc, Vss and one serial wire be connected to an evaluation tool.

■ PIN DESCRIPTION (24-pin MCU)

Pin no.	Pin name	I/O circuit type*	Function
4	PF0	В	General-purpose I/O port
1 –	X0		Main clock input oscillation pin
2	PF1	В	General-purpose I/O port
2	X1		Main clock I/O oscillation pin
3	Vss	—	Power supply pin (GND)
4 –	PG2	С	General-purpose I/O port
4	X1A		Subclock I/O oscillation pin
F	PG1	С	General-purpose I/O port
5 –	X0A		Subclock input oscillation pin
6	Vcc	_	Power supply pin
7	PG0	0	General-purpose I/O port
7 –	UCK	G	UART/SIO clock pin
	PF2		General-purpose input port
8	RST	A	Reset pin Dedicated reset pin on MB95F352L/F353L/F354L
	P17	4 -	General-purpose I/O port
9	SCL1		l²C ch. 1 clock I/O pin
	UI		UART/SIO data input pin
	P16		General-purpose I/O port
10	SDA1	J	I ² C ch. 1 data I/O pin
	UO		UART/SIO data output pin
11	P62	D	General-purpose I/O port High-current pin
	TO10		8/16-bit composite timer ch. 1 output pin
12	P63	D	General-purpose I/O port High-current pin
	TO11		8/16-bit composite timer ch. 1 output pin
13 -	P15		General-purpose I/O port
13	SCL0	- 1	I²C ch. 0 clock I/O pin
14 -	P14	- 1	General-purpose I/O port
14	SDA0		I²C ch. 0 data I/O pin
16	P64	D	General-purpose I/O port
15 –	EC1		8/16-bit composite timer ch. 1 clock input pin
16 -	P00	Е	General-purpose I/O port
10	AN00		A/D converter analog input pin

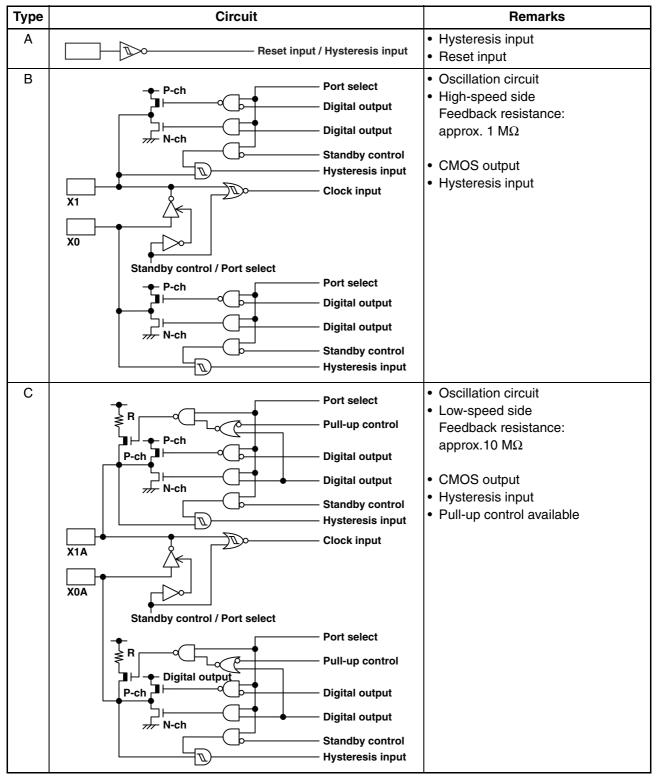
(Continued)

Pin no.	Pin name	I/O circuit type*	Function
47	P01		General-purpose I/O port
17	AN01	E	A/D converter analog input pin
	P02		General-purpose I/O port
18	INT02	E	External interrupt input pin
10	AN02		A/D converter analog input pin
	SCK		LIN-UART clock I/O pin
	P03		General-purpose I/O port
10	INT03	E	External interrupt input pin
19 —	AN03		A/D converter analog input pin
	SOT		LIN-UART data output pin
	P04		General-purpose I/O port
	INT04		External interrupt input pin
20	AN04	F	A/D converter analog input pin
	SIN		LIN-UART data input pin
	EC0		8/16-bit composite timer ch. 0 clock input pin
	P05		General-purpose I/O port High-current pin
21	INT05	E	External interrupt input pin
	AN05		A/D converter analog input pin
	TO00		8/16-bit composite timer ch. 0 output pin
	P06		General-purpose I/O port High-current pin
22	INT06	G	External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
23 —	P07	G	General-purpose I/O port
23	INT07	G	External interrupt input pin
	P12		General-purpose I/O port
24	EC0	н	8/16-bit composite timer ch. 0 clock input pin
	DBG	7	DBG input pin

*: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

■ PIN DESCRIPTION (32-pin MCU)

Pin no.	Pin name	I/O circuit type*	Function
1	Vss	—	Power supply pin (GND)
0	PG2	- c	General-purpose I/O port
2 X1A			Subclock I/O oscillation pin
3 –	PG1	с	General-purpose I/O port
3	X0A		Subclock input oscillation pin
4	Vcc	_	Power supply pin
E	PG0	G	General-purpose I/O port
5 —	UCK	G	UART/SIO clock pin
	PF2		General-purpose input port
6	RST	A	Reset pin Dedicated reset pin on MB95F352L/F353L/F354L
	P17		General-purpose I/O port
7	SCL1	J	l²C ch. 1 clock I/O pin
UI		-	UART/SIO data input pin
8	P16		General-purpose I/O port
	SDA1	J	I²C ch. 1 data I/O pin
	UO		UART/SIO data output pin
9	P63	D	General-purpose I/O port High-current pin
	TO11	-	8/16-bit composite timer ch. 1 output pin
10	P62	D	General-purpose I/O port High-current pin
	TO10		8/16-bit composite timer ch. 1 output pin
11	NC	—	It is an internally connected pin. Always leave it unconnected.
12	NC	_	It is an internally connected pin. Always leave it unconnected.
13	NC	_	It is an internally connected pin. Always leave it unconnected.
14	NC	_	It is an internally connected pin. Always leave it unconnected.
15	P14		General-purpose I/O port
15 —	SDA0	- 1	I²C ch. 0 data I/O pin
16	P15		General-purpose I/O port
16 —	SCL0		l²C ch. 0 clock I/O pin
17	P64		General-purpose I/O port
17 —	EC1	– D	8/16-bit composite timer ch. 1 clock input pin
10	P00		General-purpose I/O port
18 —	AN00	E	A/D converter analog input pin



(Continued)

Pin no.	Pin name	I/O circuit type*	Function
10	P01	— Е	General-purpose I/O port
19 —	AN01		A/D converter analog input pin
	P02		General-purpose I/O port
20	INT02	E	External interrupt input pin
20	AN02		A/D converter analog input pin
	SCK		LIN-UART clock I/O pin
	P03		General-purpose I/O port
21	INT03	E	External interrupt input pin
21	AN03		A/D converter analog input pin
	SOT		LIN-UART data output pin
	P04		General-purpose I/O port
	INT04		External interrupt input pin
22	AN04	F	A/D converter analog input pin
	SIN		LIN-UART data input pin
	EC0		8/16-bit composite timer ch. 0 clock input pin
23	P05		General-purpose I/O port High-current pin
	INT05	E	External interrupt input pin
	AN05		A/D converter analog input pin
	ТО00		8/16-bit composite timer ch. 0 output pin
	P06		General-purpose I/O port High-current pin
24	INT06	G	External interrupt input pin
	TO01		8/16-bit composite timer ch. 0 output pin
	P12		General-purpose I/O port
25	EC0	Н	8/16-bit composite timer ch. 0 clock input pin
	DBG		DBG input pin
26 —	P07	G	General-purpose I/O port
20	INT07	ŭ	External interrupt input pin
27	NC	—	It is an internally connected pin. Always leave it unconnected.
28	NC		It is an internally connected pin. Always leave it unconnected.
29	NC	—	It is an internally connected pin. Always leave it unconnected.
30	NC		It is an internally connected pin. Always leave it unconnected.
31 —	PF1	— В	General-purpose I/O port
	X1		Main clock I/O oscillation pin
32 —	PF0	— В	General-purpose I/O port
	X0		Main clock input oscillation pin

*: For the I/O circuit types, see "■ I/O CIRCUIT TYPE".

■ I/O CIRCUIT TYPE

Туре	Circuit	Remarks
D	P-ch Digital output Digital output N-ch Standby control Hysteresis input	 CMOS output Hysteresis input
E	Pull-up control P-ch P-ch N-ch Analog input	 CMOS output Hysteresis input Pull-up control available
	Allaidy input A/D control Standby control Hysteresis input	
н	Pull-up control	 CMOS output Hysteresis input CMOS input Pull-up control available
	Analog input A/D control Standby control Hysteresis input CMOS input	
G	P-ch P-ch Digital output	 CMOS output Hysteresis input Pull-up control available
	N-ch Standby control	A Ni ob over durin a la la
Н	Standby control Hysteresis input Digital output	 N-ch open drain output Hysteresis input

Туре	Circuit	Remarks
I	N-ch	N-ch open drain outputHysteresis inputCMOS input
	CMOS input	
	Standby control Hysteresis input	
J	P-ch N-ch Digital output	 CMOS output Hysteresis input CMOS input N-ch open drain output in I²C mode
	Standby control	

NOTES ON DEVICE HANDLING

• Preventing latch-ups

When using the device, ensure that the voltage applied does not exceed the maximum voltage rating. In a CMOS IC, if a voltage higher than V_{CC} or a voltage lower than V_{SS} is applied to an input/output pin that is neither a medium-withstand voltage pin nor a high-withstand voltage pin, or if a voltage out of the rating range of power supply voltage mentioned in "1. Absolute Maximum Ratings" of "■ ELECTRICAL CHARAC-TERISTICS" is applied to the V_{CC} pin or the V_{SS} pin, a latch-up may occur.

When a latch-up occurs, power supply current increases significantly, which may cause a component to be thermally destroyed.

• Stabilizing supply voltage

Supply voltage must be stabilized.

A malfunction may occur when power supply voltage fluctuates rapidly even though the fluctuation is within the guaranteed operating range of the Vcc power supply voltage.

As a rule of voltage stabilization, suppress voltage fluctuation so that the fluctuation in V_{cc} ripple (p-p value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the standard V_{cc} value, and the transient fluctuation rate does not exceed 0.1 V/ms at a momentary fluctuation such as switching the power supply.

• Notes on using the external clock

When an external clock is used, oscillation stabilization wait time is required for power-on reset, wake-up from subclock mode or stop mode.

■ PIN CONNECTION

• Treatment of unused pins

If an unused input pin is left unconnected, a component may be permanently damaged due to malfunctions or latch-ups. Always pull up or pull down an unused input pin through a resistor of at least 2 k Ω . Set an unused input/output pin to the output state and leave it unconnected, or set it to the input state and treat it the same as an unused input pin. If there is an unused output pin, leave it unconnected.

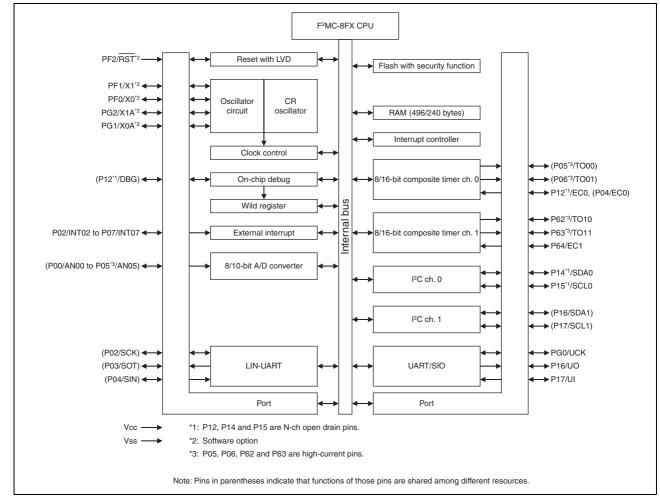
• Power supply pins

To reduce unnecessary electro-magnetic emission, prevent malfunctions of strobe signals due to an increase in the ground level, and conform to the total output current standard, always connect the V_{cc} pin and the V_{ss} pin to the power supply and ground outside the device. In addition, connect the current supply source to the V_{cc} pin and the V_{ss} pin with low impedance.

It is also advisable to connect a ceramic capacitor of approximately 0.1 μ F as a bypass capacitor between the V_{cc} pin and the V_{ss} pin at a location close to this device.

DBG pin

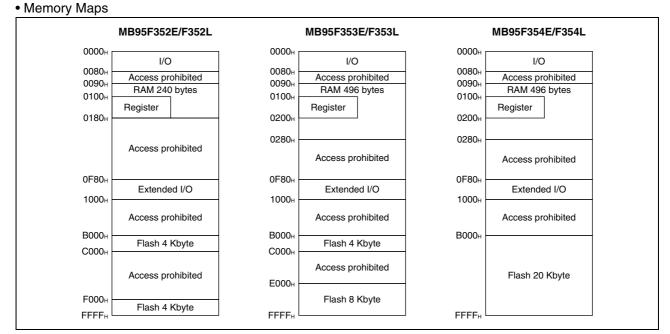
Connect the DBG pin directly to an external pull-up resistor.


To prevent the device from unintentionally entering the debug mode due to noise, minimize the distance between the DBG pin and the Vcc or Vss pin when designing the layout of the printed circuit board. The DBG pin should not stay at "L" level after power-on until the reset is released.

• RST pin

Connect the RST pin directly to an external pull-up resistor.

To prevent the device from unintentionally entering the reset mode due to noise, minimize the distance between the $\overline{\text{RST}}$ pin and the V_{CC} or V_{SS} pin when designing the layout of the printed circuit board. The PF2/RST pin functions as the reset input pin after power-on. The RSTEN bit in the SYSC register is used to switch the pin functions, the reset input function and the general-purpose I/O port function, of the PF2/RST pin. However, only on MB95F352E/F353E/F354E can the pin functions be changed.


■ BLOCK DIAGRAM

■ CPU CORE

• Memory Space

The memory space of the MB95350L Series is 64 Kbyte in size, and consists of an I/O area, a data area, and a program area. The memory space includes areas intended for specific purposes such as general-purpose registers and a vector table. The memory maps of the MB95350L Series are shown below.

■ I/O MAP

Address	Register abbreviation	Register name	R/W	Initial value
0000н	PDR0	Port 0 data register	R/W	0000000в
0001 н	DDR0	Port 0 direction register	R/W	0000000в
0002н	PDR1	Port 1 data register	R/W	0000000в
0003н	DDR1	Port 1 direction register	R/W	0000000в
0004н		(Disabled)	—	_
0005н	WATR	Oscillation stabilization wait time setting register	R/W	11111111в
0006н		(Disabled)	_	—
0007н	SYCC	System clock control register	R/W	0000X011в
0008н	STBC	Standby control register	R/W	00000XXX _B
0009н	RSRR	Reset source register	R/W	XXXXXXXXB
000Ан	TBTC	Time-base timer control register	R/W	0000000в
000Вн	WPCR	Watch prescaler control register	R/W	0000000в
000Сн	WDTC	Watchdog timer control register	R/W	00XX0000 _B
000Dн	SYCC2	System clock control register 2	R/W	XX100011 _B
000Ен to 0015н	_	(Disabled)	_	_
0016 H	PDR6	Port 6 data register	R/W	0000000в
0017 н	DDR6	Port 6 direction register	R/W	0000000в
0018н to 0027н		(Disabled)		_
0028н	PDRF	Port F data register	R/W	0000000в
0029н	DDRF	Port F direction register	R/W	0000000в
002А н	PDRG	Port G data register	R/W	0000000в
002Вн	DDRG	Port G direction register	R/W	0000000в
002Сн	PUL0	Port 0 pull-up register	R/W	0000000в
002Dн to 0034н	_	(Disabled)	_	_
0035н	PULG	Port G pull-up register	R/W	0000000в
0036н	T01CR1	8/16-bit composite timer 01 status control register 1 ch. 0	R/W	0000000в
0037н	T00CR1	8/16-bit composite timer 00 status control register 1 ch. 0	R/W	0000000в
0038н	T11CR1	8/16-bit composite timer 11 status control register 1 ch. 1	R/W	0000000в
0039н	T10CR1	8/16-bit composite timer 10 status control register 1 ch. 1	R/W	0000000в
003Ан to 0048н	_	(Disabled)	_	_
0049н	EIC10	External interrupt circuit control register ch. 2/ch. 3	R/W	0000000в
004Ан	EIC20	External interrupt circuit control register ch. 4/ch. 5	R/W	0000000в
004Bн	EIC30	External interrupt circuit control register ch. 6/ch. 7	R/W	00000000в

Address	Register abbreviation	Register name	R/W	Initial value
004Сн, 004Dн	_	(Disabled)	_	_
004Е н	LVDR	LVD reset voltage selection ID register	R/W	0000000в
004F н	LVDC	LVD interrupt control register	R/W	X000000XB
0050н	SCR	LIN-UART serial control register	R/W	0000000в
0051 н	SMR	LIN-UART serial mode register	R/W	00000000в
0052н	SSR	LIN-UART serial status register	R/W	00001000в
0053н	RDR/TDR	LIN-UART receive/transmit data register	R/W	00000000в
0054н	ESCR	LIN-UART extended status control register	R/W	00000100в
0055н	ECCR	LIN-UART extended communication control register	R/W	000000XXB
0056н	SMC10	UART/SIO serial mode control register 1 ch. 0	R/W	0000000в
0057 н	SMC20	UART/SIO serial mode control register 2 ch. 0	R/W	0010000в
0058 н	SSR0	UART/SIO serial status and data register ch. 0	R/W	0000001в
0059н	TDR0	UART/SIO serial output data register ch. 0	R/W	0000000в
005А н	RDR0	UART/SIO serial input data register ch. 0	R	0000000в
005Вн to 005Fн		(Disabled)	_	
0060н	IBCR00	I ² C bus control register 0 ch. 0	R/W	0000000в
0061 н	IBCR10	I ² C bus control register 1 ch. 0	R/W	0000000в
0062н	IBSR0	I ² C bus status register ch. 0	R	0000000в
0063н	IDDR0	I ² C data register ch. 0	R/W	0000000в
0064н	IAAR0	I ² C address register ch. 0	R/W	0000000в
0065н	ICCR0	I ² C clock control register ch. 0	R/W	0000000в
0066н	IBCR01	I ² C bus control register 0 ch. 1	R/W	0000000в
0067н	IBCR11	I ² C bus control register 1 ch. 1	R/W	0000000в
0068 H	IBSR1	I ² C bus status register ch. 1	R	0000000в
0069 н	IDDR1	I ² C data register ch. 1	R/W	0000000в
006А н	IAAR1	I ² C address register ch. 1	R/W	0000000в
006Вн	ICCR1	I ² C clock control register ch. 1	R/W	0000000в
006С н	ADC1	8/10-bit A/D converter control register 1	R/W	0000000в
006Dн	ADC2	8/10-bit A/D converter control register 2	R/W	0000000в
006Е н	ADDH	8/10-bit A/D converter data register (upper)	R/W	0000000в
006F н	ADDL	8/10-bit A/D converter data register (lower)	R/W	0000000в
0070н	—	(Disabled)		_
0071 н	FSR2	Flash memory status register 2	R/W	0000000в
0072н	FSR	Flash memory status register	R/W	000X0000B
0073н	SWRE0	Flash memory sector write control register 0	R/W	0000000в
0074н	FSR3	Flash memory status register 3	R	0000000в

Address	Register abbreviation	Register name	R/W	Initial value
0075н	_	(Disabled)	—	_
0076н	WREN	Wild register address compare enable register	R/W	0000000в
0077н	WROR	Wild register data test setting register	R/W	0000000в
0078н	—	Mirror of register bank pointer (RP) and mirror of direct bank pointer (DP)	_	_
0079 н	ILR0	Interrupt level setting register 0	R/W	11111111 в
007Ан	ILR1	Interrupt level setting register 1	R/W	11111111
007Вн	ILR2	Interrupt level setting register 2	R/W	11111111
007Сн	ILR3	Interrupt level setting register 3	R/W	11111111
007Dн	ILR4	Interrupt level setting register 4	R/W	11111111в
007Е н	ILR5	Interrupt level setting register 5	R/W	11111111
007F н	—	(Disabled)	—	_
0F80н	WRARH0	Wild register address setting register (upper) ch. 0	R/W	0000000в
0F81н	WRARL0	Wild register address setting register (lower) ch. 0	R/W	0000000в
0F82н	WRDR0	Wild register data setting register ch. 0	R/W	0000000в
0F83н	WRARH1	Wild register address setting register (upper) ch. 1	R/W	0000000в
0F84н	WRARL1	Wild register address setting register (lower) ch. 1	R/W	0000000в
0F85н	WRDR1	Wild register data setting register ch. 1	R/W	0000000в
0F86н	WRARH2	Wild register address setting register (upper) ch. 2	R/W	0000000в
0F87н	WRARL2	Wild register address setting register (lower) ch. 2	R/W	0000000в
0F88н	WRDR2	Wild register data setting register ch. 2	R/W	0000000в
0F89н to 0F91н	_	(Disabled)	_	_
0F92н	T01CR0	8/16-bit composite timer 01 status control register 0 ch. 0	R/W	0000000в
0F93н	T00CR0	8/16-bit composite timer 00 status control register 0 ch. 0	R/W	0000000в
0F94н	T01DR	8/16-bit composite timer 01 data register ch. 0	R/W	0000000в
0F95н	T00DR	8/16-bit composite timer 00 data register ch. 0	R/W	0000000в
0F96н	TMCR0	8/16-bit composite timer 00/01 timer mode control register ch. 0	R/W	0000000в
0F97н	T11CR0	8/16-bit composite timer 11 status control register 0 ch. 1	R/W	0000000в
0F98н	T10CR0	8/16-bit composite timer 10 status control register 0 ch. 1	R/W	0000000в
0F99н	T11DR	8/16-bit composite timer 11 data register ch. 1	R/W	0000000в
0F9Ан	T10DR	8/16-bit composite timer 10 data register ch. 1	R/W	0000000в
0F9B⊦	TMCR1	8/16-bit composite timer 10/11 timer mode control register ch. 1	R/W	00000008
0F9Cн to 0FBBн	_	(Disabled)	_	_

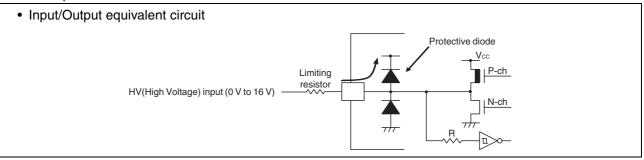
Address	Register abbreviation	Register name	R/W	Initial value
0FBCH	BGR1	LIN-UART baud rate generator register 1	R/W	0000000в
0FBDH	BGR0	LIN-UART baud rate generator register 0	R/W	0000000в
0FBEH	PSSR0	UART/SIO dedicated baud rate generator prescaler select register ch. 0	R/W	0000000в
0FBF _H	BRSR0	UART/SIO dedicated baud rate generator baud rate setting register ch. 0	R/W	0000000в
0FC0н to 0FC2н	_	(Disabled)		_
0FC3н	AIDRL	A/D input disable register (lower)	R/W	0000000в
0FC4н to 0FE3н	_	(Disabled)	_	_
0FE4н	CRTH	Main CR clock trimming register (upper)	R/W	0XXXXXXAB
0FE5н	CRTL	Main CR clock trimming register (lower)	R/W	00XXXXXX _B
0FE6н, 0FE7н	_	(Disabled)	_	—
0FE8H	SYSC	System configuration register	R/W	11000001в
0FE9н	CMCR	Clock monitoring control register	R/W	0000000в
0FEAн	CMDR	Clock monitoring data register	R	0000000в
0FEBH	WDTH	Watchdog timer selection ID register (upper)	R	XXXXXXX
0FECH	WDTL	Watchdog timer selection ID register (lower)	R	XXXXXXX
0FEDH		(Disabled)	—	—
0FEEH	ILSR	Input level select register	R/W	0000000в
0FEFн to 0FFFн	_	(Disabled)		_

- R/W access symbols
 - R/W : Readable / Writable
 - R : Read only
 - W : Write only
- Initial value symbols
 - 0 : The initial value of this bit is "0".
 - 1 : The initial value of this bit is "1".
 - X : The initial value of this bit is indeterminate.
- Note: Do not write to an address that is "(Disabled)". If a "(Disabled)" address is read, an indeterminate value is returned.

■ INTERRUPT SOURCE TABLE

		Vector tab	le address		Priority order of
Interrupt source	Interrupt request number	Upper	Lower	Bit name of interrupt level setting register	interrupt sources of the same level (occurring simultaneously)
External interrupt ch. 4	IRQ00	FFFA H	FFFB H	L00 [1:0]	High
External interrupt ch. 5	IRQ01	FFF8⊦	FFF9⊦	L01 [1:0]	A
External interrupt ch. 2	IRQ02	FFF6⊦	FFF7H	L02 [1:0]	
External interrupt ch. 6		ГГГОН	ГГГ/Н	L02 [1.0]	
External interrupt ch. 3				1.02 [1:0]	
External interrupt ch. 7	- IRQ03	FFF4 _H	FFF5H	L03 [1:0]	
LVD interrupt	IRQ04			1.04 [1:0]	
UART/SIO ch. 0	- IRQ04	FFF2H	FFF3⊦	L04 [1:0]	
8/16-bit composite timer ch. 0 (lower)	IRQ05	FFF0H	FFF1⊦	L05 [1:0]	
8/16-bit composite timer ch. 0 (upper)	IRQ06	FFEEH	FFEFH	L06 [1:0]	
LIN-UART (reception)	IRQ07	FFECH	FFEDH	L07 [1:0]	
LIN-UART (transmission)	IRQ08	FFEAH	FFEBH	L08 [1:0]	
_	IRQ09	FFE8H	FFE9н	L09 [1:0]	
l²C ch. 1	IRQ10	FFE6H	FFE7н	L10 [1:0]	
	IRQ11	FFE4 _H	FFE5H	L11 [1:0]	
_	IRQ12	FFE2H	FFE3H	L12 [1:0]	
_	IRQ13	FFE0H	FFE1н	L13 [1:0]	
8/16-bit composite timer ch. 1 (upper)	IRQ14	FFDEH	FFDF⊦	L14 [1:0]	
_	IRQ15	FFDC _H	FFDDH	L15 [1:0]	
l²C ch. 0	IRQ16	FFDAH	FFDBH	L16 [1:0]	
_	IRQ17	FFD8H	FFD9н	L17 [1:0]	
8/10-bit A/D converter	IRQ18	FFD6н	FFD7н	L18 [1:0]	
Time-base timer	IRQ19	FFD4 _H	FFD5H	L19 [1:0]	
Watch prescaler	IRQ20	FFD2H	FFD3H	L20 [1:0]	
—	IRQ21	FFD0н	FFD1н	L21 [1:0]	
8/16-bit composite timer ch. 1 (lower)	IRQ22	FFCEH	FFCFH	L22 [1:0]	▼
Flash memory	IRQ23	FFCCH	FFCDH	L23 [1:0]	Low

■ ELECTRICAL CHARACTERISTICS


1. Absolute Maximum Ratings

Deremeter	Symbol	Rat	ing	فأحدا	Bomarka	
Parameter	Symbol	Min	Max	Unit	Remarks	
Power supply voltage*1	Vcc	Vss - 0.3	Vss + 4.0	V		
la autoralita a a *1	VI1	Vss - 0.3	Vss + 4.0	V	Other than P14 and P15*2	
Input voltage*1	Vı2	Vss – 0.3	Vss + 6.0	V	P14 and P15*2	
Output voltage*1	Vo	Vss – 0.3	Vss + 4.0	V	*2	
Maximum clamp current	CLAMP	-2	+2	mA	Applicable to specific pins*3	
Total maximum clamp current	Σ clamp		20	mA	Applicable to specific pins*3	
"L" level maximum	OL1		15	mA	Other than P05, P06, P62 and P63	
output current	OL2		15		P05, P06, P62 and P63	
"I" lovel overage ourrept	Iolav1		4	mA	Other than P05, P06, P62 and P63 Average output current = operating current × operating ratio (1 pin)	
"L" level average current	Iolav2		12		P05, P06, P62 and P63 Average output current = operating current × operating ratio (1 pin)	
"L" level total maximum output current	ΣΙοι	_	100	mA		
"L" level total average output current	Σ Iolav	_	50	mA	Total average output current = operating current \times operating ratio (Total number of pins)	
"H" level maximum	Іон1		-15		Other than P05, P06, P62 and P63	
output current	ОН2		-15	mA	P05, P06, P62 and P63	
"H" level average	Іонаv1		-4	mA	Other than P05, P06, P62 and P63 Average output current = operating current × operating ratio (1 pin)	
current	Іонау2		-8		P05, P06, P62 and P63 Average output current = operating current × operating ratio (1 pin)	
"H" level total maximum output current	ΣІон	_	-100	mA		
"H" level total average output current	ΣΙοήαν		-50	mA	Total average output current = operating current × operating ratio (Total number of pins)	
Power consumption	Pd		320	mW		
Operating temperature	TA	-40	+85	°C		
Storage temperature	Tstg	-55	+150	°C		

(Continued)

- *1: The parameter is based on $V_{SS} = 0.0 V$.
- *2: V₁₁, V₁₂ and V₀ must not exceed V_{CC} + 0.3 V. V₁₁ and V₁₂ must not exceed the rated voltage. However, if the maximum current to/from an input is limited by means of an external component, the I_{CLAMP} rating is used instead of the V₁₁ and V₁₂ ratings.
- *3: Applicable to the following pins: P00 to P07, P15, P16, P62 to P64, PF0, PF1, PG0 to PG2
 - Use under recommended operating conditions.
 - Use with DC voltage (current).
 - The HV (High Voltage) signal is an input signal exceeding the Vcc voltage. Always connect a limiting resistor between the HV (High Voltage) signal and the microcontroller before applying the HV (High Voltage) signal.
 - The value of the limiting resistor should be set to a value at which the current to be input to the microcontroller pin when the HV (High Voltage) signal is input is below the standard value, irrespective of whether the current is transient current or stationary current.
 - When the microcontroller drive current is low, such as in low power consumption modes, the HV (High Voltage) input potential may pass through the protective diode to increase the potential of the Vcc pin, affecting other devices.
 - If the HV (High Voltage) signal is input when the microcontroller power supply is off (not fixed at 0 V), since power is supplied from the pins, incomplete operations may be executed.
 - If the HV (High Voltage) input is input after power-on, since power is supplied from the pins, the voltage of power supply may not be sufficient to enable a power-on reset.
 - Do not leave the HV (High Voltage) input pin unconnected.
 - Example of a recommended circuit

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

2. Recommended Operating Conditions

(Vss = 0.0 V)

Parameter	Symbol	Symbol Value Unit		Bem	arks				
rarameter	Symbol	Min	Max	onne	nemalks				
	$1.8^{*1*2^{*3}}$ 3.6 In normal operation, $T_A = -10^{\circ}C$ to $+85^{\circ}C$								
Power supply	ly _{Vcc}	2.0	3.6	v	In normal operation, $T_A = -40^{\circ}C$ to $+85^{\circ}C$	Other than on-chip debug mode			
voltage		1.5	3.6		Hold condition in stop mode				
		2.7	3.6		In normal operation	On-chip debug mode			
		1.5	3.6		Hold condition in stop mode	On-chip debug mode			
Operating	TA	-40	+85	°C	Other than on-chip debug mo	ode			
temperature	IA	+5	+35		On-chip debug mode				

*1: This value varies depending on the operating frequency, the machine clock and the analog guaranteed range.

*2: This value is initially 2.03 V when the low-voltage detection reset is used.

*3: The threshold voltage can be set to 2.03 V, 2.55 V or 3.10 V by using the software.

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.

3. DC Characteristics

· · · · · ·			(•			•	7.0 v,	T _A = -40°C to +85°C)	
Parameter	Symbol	Pin name	Condition		Value	r	Unit	Remarks	
	-			Min	Тур	Max			
	VIHI1	P04, P16, P17	*1	0.7 Vcc	_	Vcc + 0.3	۷	When CMOS input level is selected	
	VIHI2	P14, P15	*1	0.7 Vcc	—	Vss + 5.5	V	When CMOS input level is selected	
"H" level input voltage	VIHS1	P00 to P07, P12, P16, P17, P60 to P64, PF0, PF1, PG0 to PG2	*1	0.8 Vcc		Vcc + 0.3	V	Hysteresis input	
	VIHS2	P14, P15	*1	0.8 Vcc	_	$V_{\text{SS}} + 5.5$	V	Hysteresis input	
	VIHM	PF2	_	0.7 Vcc		Vcc + 0.3	V	Hysteresis input	
V _{IL} P04, P14 to P17		*1	Vss - 0.3		0.3 Vcc	V	When CMOS input level is selected		
"L" level input voltage	Vils	P00 to P07, P12, P14 to P17, P62 to P64, PF0, PF1, PG0 to PG2	*1	Vss – 0.3	_	0.2 Vcc	V	Hysteresis input	
	VILM	PF2	_	Vss - 0.3	_	0.3 Vcc	V	Hysteresis input	
Open-drain	V _{D1}	P12	_	$V_{\text{SS}}-0.3$	_	$V_{\text{SS}} + 5.5$	V		
output	V _{D2}	P14, P15	_	$V_{\text{SS}}-0.3$		Vss + 5.5	V		
application voltage	V _{D3}	P16, P17		$V_{\text{SS}} - 0.3$	_	Vss + 3.6	V	In I ² C mode	
"H" level output	V _{OH1}	Output pins other than P05, P06, P12, P62, P63	Іон = – 4 mA	Vcc - 0.5			V		
voltage	V _{OH2}	P05, P06, P62 and P63	Іон = − 8 mA	Vcc - 0.5		_	۷		
"L" level output	Vol1	Output pins other than P05, P06, P62, P63	lo∟ = 4 mA	_	_	0.4	V		
voltage	Vol2	P05, P06, P62, P63	lo∟ = 12 mA			0.4	۷		
Input leak current (Hi-Z output leak current)	lu	All input pins	0.0 V < Vı < Vcc	-5		+5	μA	When pull-up resistance is disabled	
Pull-up resistance	Rpull	P00 to P07, PG1, PG2	V1 = 0 V	25	50	100	kΩ	When pull-up resistance is enabled	
Input capacitance	Cin	Other than Vcc and Vss	f = 1 MHz		5	15	pF		

 $(V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Devenueter	O week of	Dia ang a	Q a maliti a m		Value		11	Demerika
Parameter	Symbol	Pin name	Condition	Min	Typ⁺³	Max	Unit	Remarks
			Fсн = 32 MHz FмP = 16 MHz		11.2	20	mA	Flash memory product (except writing and erasing)
	Icc		Main clock mode (divided by 2)	_	26.2	38	mA	Flash memory product (at writing and erasing)
				—	13.3	23.4	mA	At A/D conversion
	Iccs	Vcc (External clock operation)	$F_{CH} = 32 \text{ MHz}$ $F_{MP} = 16 \text{ MHz}$ Main sleep mode (divided by 2)	_	5.2	9.6	mA	
	lcc∟		$\label{eq:Fcl} \begin{array}{l} F_{CL} = 32 \text{ kHz} \\ F_{MPL} = 16 \text{ kHz} \\ \text{Subclock mode} \\ (\text{divided by 2}) \\ T_{A} = +25^{\circ}\text{C} \end{array}$	_	15	35	μΑ	
Power supply current* ²	Iccls		$F_{CL} = 32 \text{ kHz}$ $F_{MPL} = 16 \text{ kHz}$ Subsleep mode (divided by 2) $T_{A} = +25^{\circ}C$	_	5	15	μA	
	Ісст		$F_{CL} = 32 \text{ kHz}$ Watch mode Main stop mode $T_A = +25^{\circ}C$		1	10	μA	
	Іссмск	Vcc	$F_{CRH} = 12.5 \text{ MHz}$ $F_{MP} = 12.5 \text{ MHz}$ Main CR clock mode	_	9	15	mA	
	ICCSCR	••••	Sub-CR clock mode (divided by 2) $T_A = +25^{\circ}C$	_	77	160	μA	
	Ісстѕ	Vcc (External clock	Fсн = 32 MHz Time-base timer mode		1.1	3	mA	
	Іссн	operation)	Substop mode T _A = +25°C	_	0.1	5	μA	(Continued)

(Vcc = 1.8 V to 3.6 V, Vss = 0.0 V, T_A = -40°C to +85°C)

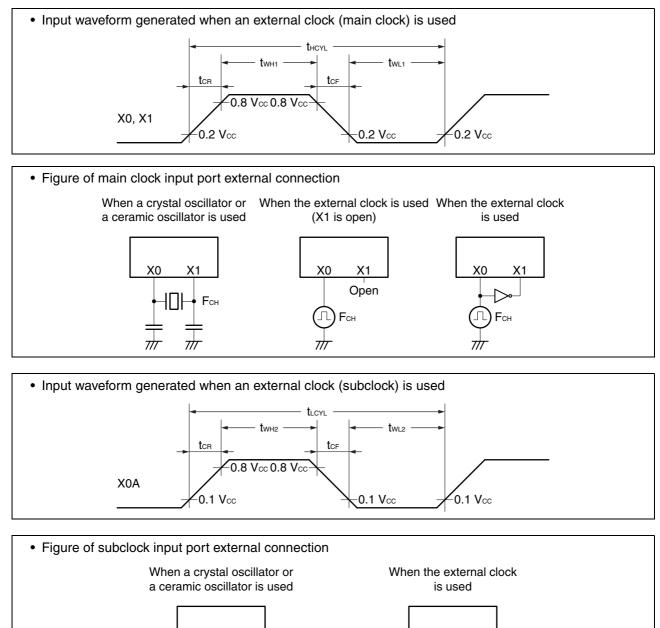
(Continued)

			(Vcc =	1.8 V to	o 3.6 V,	Vss = 0	.0 V, T	$A = -40^{\circ}C \text{ to } +85^{\circ}C)$
Parameter	Symbol	Pin name	Condition		Value		Unit	Remarks
Falametei	Symbol	Finname	Condition	Min	Тур⁺³	Мах	Unit	neillaiks
Power supply current* ²	Ilvd		Current consumption for low-voltage detection circuit only	_	6.4	32	μA	
	Ісвн	Vcc	Current consumption for the main CR oscillator	_	0.25	0.6	mA	
	ICRL		Current consumption for the sub-CR oscillator oscillating at 100 kHz		20	72	μΑ	

*1: The input levels of P04 and P14 to P17 can be switched between "CMOS input level" and "hysteresis input level". The input level selection register (ILSR) is used to switch between the two input levels.

- *2: The power supply current is determined by the external clock. When the low-voltage detection option is selected, the power-supply current will be the sum of adding the current consumption of the low-voltage detection circuit (ILVD) to one of the value from Icc to IccH. In addition, when both the low-voltage detection option and the CR oscillator are selected, the power supply current will be the sum of adding up the current consumption of the low-voltage detection circuit, the current consumption of the CR oscillators (ICRH, ICRL) and a specified value. In on-chip debug mode, the CR oscillator (ICRH) and the low-voltage detection circuit are always enabled, and current consumption therefore increases accordingly.
 - See "4. AC Characteristics: (1) Clock Timing" for F_{CH} and F_{CL} .
 - See "4. AC Characteristics: (2) Source Clock/Machine Clock" for FMP and FMPL.

*3: Vcc = 3.0 V, $T_A = +25^{\circ}C$


4. AC Characteristics

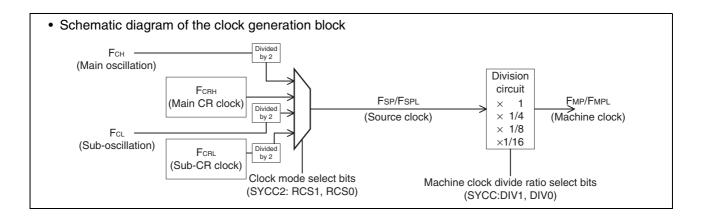
(1) Clock Timing

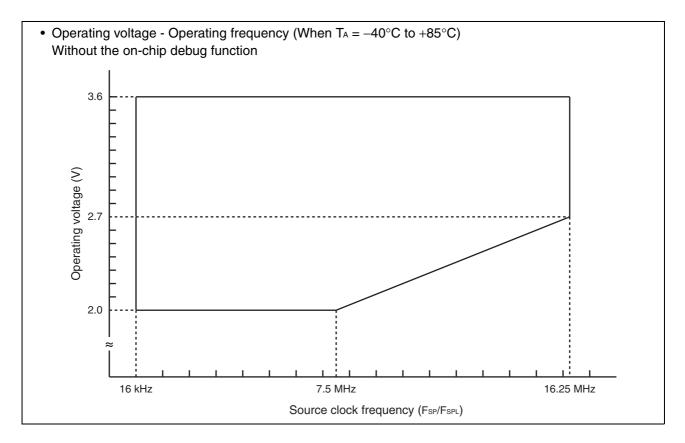
Demonstra	Sym-		Condi-		Value		11 9	Domorko	
Parameter	bol	Pin name	tion	Min	Тур	Мах	Unit	Remarks	
	_	X0, X1	_	1	_	16.25	MHz	When the main oscillation circuit is used	
	Fсн	X0	X1: open	1	_	12	MHz	When the main external	
		X0, X1	*	1	_	32.5	MHz	clock is used	
				12.25	12.5	12.75	MHz		
				9.8	10	10.2	MHz	When the main CR clock	
				7.84	8	8.16	MHz		
Clock	Fсвн			0.98	1	1.02	MHz		
frequency	I CRH			12.1875	12.5	12.8125	MHz		
		_		9.75	10	10.25	MHz	When the main CR clock is used	
				7.8	8	8.2	MHz	$T_A = -40 \ ^\circ C \text{ to } -10 \ ^\circ C$	
				0.975	1	1.025	MHz		
	Fc∟	X0A, X1A	_	_	32.768	_	kHz	When the sub-oscillation circuit or the sub-external clock is used	
	FCRL	—	_	50	100	200	kHz	When the sub-CR clock is used	
	t HCYL	X0, X1	_	61.5	_	1000	ns	When the main oscillation circuit is used	
Clock cycle		X0	X1: open	83.4	_	1000	ns	When the main external	
time		X0, X1	*	30.8	_	1000	ns	clock is used	
	t lcyl	X0A, X1A	_	_	30.5	_	μs	When the sub-oscillation circuit or the sub-external clock is used	
	twH1	X0	X1: open	33.4	_	—	ns	When the external clock	
Input clock	tw∟1	X0, X1	*	12.4	_		ns	is used, the duty ratio	
pulse width	twн₂ tw∟₂	X0A	_	—	15.2	_	μs	should range between 40% and 60%.	
Input clock	t CR	X0	X1: open	—	_	5	ns	When the external clock	
rise time and fall time	tc⊧	X0, X1	*	—		5	ns	is used	
CR	tсянwк		_	_	_	250	μs	When the main CR clock is used	
oscillation start time	t CRLWK	—	_	—		10	μs	When the sub-CR clock is used	

 $(V_{CC} = 1.8 \text{ V to } 3.6 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

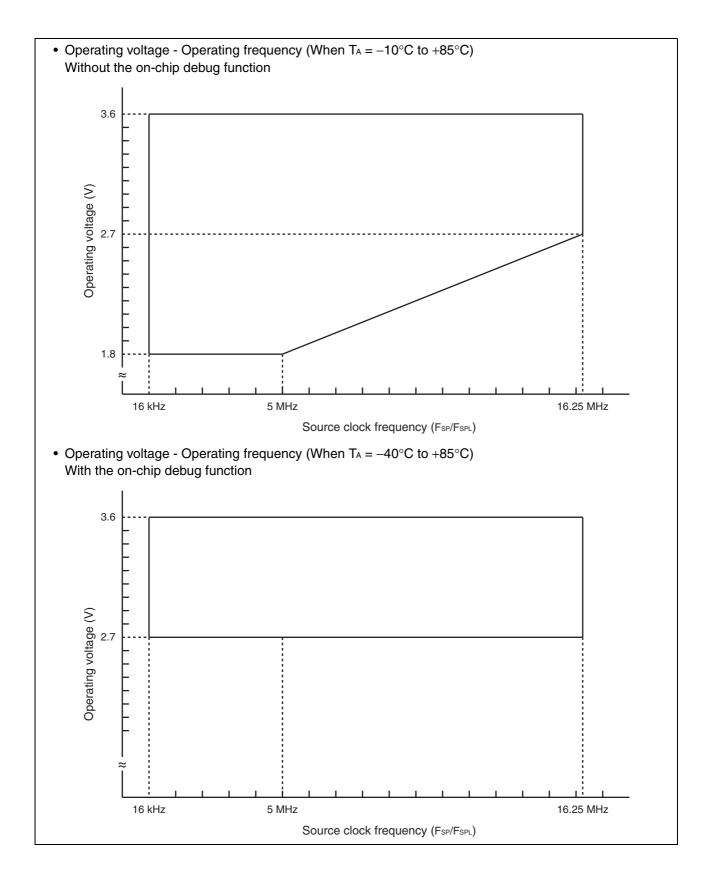
*: The external clock signal is input to X0 and the inverted external clock signal to X1.

(2) Source Clock/Machine Clock

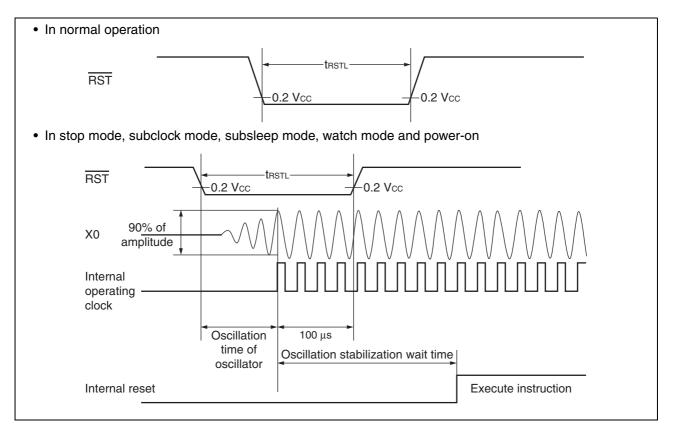

Devenueter	Cumhal	Pin		Value		Unit	Demerke	
Parameter	Symbol	name	Min	Тур	Max	Unit	Remarks	
			61.5	_	2000	ns	When the main external clock is used Min: $F_{CH} = 32.5$ MHz, divided by 2 Max: $F_{CH} = 1$ MHz, divided by 2	
Source clock cycle time*1	tsc∟ĸ	_	80	_	1000	ns	When the main CR clock is used Min: Fcrн = 12.5 MHz Max: Fcrн = 1 MHz	
			_	61	_	μs	When the sub-oscillation clock is used $F_{CL} = 32.768 \text{ kHz}$, divided by 2	
			_	20	_	μs	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$, divided by 2	
	Fsp		0.5	_	16.25	MHz	When the main oscillation clock is used	
Source clock frequency	1 5P		1	—	12.5	MHz	When the main CR clock is used	
	Fspl			16.384	_	kHz	When the sub-oscillation clock is used	
			_	50	_	kHz	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$, divided by 2	
			61.5	_	32000	ns	When the main oscillation clock is used Min: $F_{SP} = 16.25$ MHz, no division Max: $F_{SP} = 0.5$ MHz, divided by 16	
Machine clock cycle time* ² (minimum	tMCLK		80	_	16000	ns	When the main CR clock is used Min: $F_{SP} = 12.5 \text{ MHz}$ Max: $F_{SP} = 1 \text{ MHz}$, divided by 16	
instruction execution time)	UNCLK		61		976.5	μs	When the sub-oscillation clock is used Min: $F_{SPL} = 16.384$ kHz, no division Max: $F_{SPL} = 16.384$ kHz, divided by 16	
			20	_	320	μs	When the sub-CR clock is used Min: $F_{SPL} = 50$ kHz, no division Max: $F_{SPL} = 50$ kHz, divided by 16	
	Емр		0.031	—	16.25	MHz	When the main oscillation clock is used	
Machine clock	IMP		0.0625	—	12.5	MHz	When the main CR clock is used	
frequency		—	1.024	—	16.384	kHz	When the sub-oscillation clock is used	
noquonoy	Fmpl		3.125	_	50	kHz	When the sub-CR clock is used $F_{CRL} = 100 \text{ kHz}$	


*1: This is the clock before it is divided according to the division ratio set by the machine clock division ratio selection bits (SYCC:DIV1, DIV0]). This source clock is divided to become a machine clock according to the division ratio set by the machine clock division ratio selection bits (SYCC:DIV1, DIV0]). In addition, a source clock can be selected from the following.

- Main clock divided by 2
- Main CR clock
- Subclock divided by 2
- Sub-CR clock divided by 2


*2: This is the operating clock of the microcontroller. A machine clock can be selected from the following.

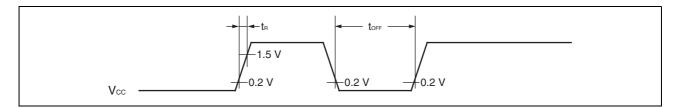
- Source clock (no division)
- Source clock divided by 4
- Source clock divided by 8
- Source clock divided by 16

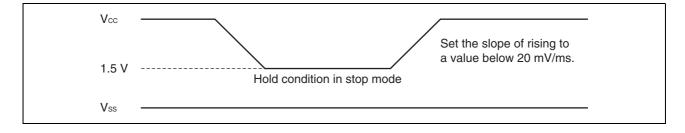


(3) External Reset

 $(V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$ Value Symbol Parameter Unit Remarks Min Max 2 tMCLK*1 ____ In normal operation ns In stop mode, subclock mode, RST "L" level Oscillation time of the sub-sleep mode, watch mode, **t**RSTL μs ____ oscillator*2 + 100 pulse width and power-on 100 In time-base timer mode μs ____

*1: See "(2) Source Clock/Machine Clock" for tMCLK.


*2: The oscillation time of an oscillator is the time for it to reach 90% of its amplitude. The crystal oscillator has an oscillation time of between several ms and tens of ms. The ceramic oscillator has an oscillation time of between hundreds of µs and several ms. The external clock has an oscillation time of 0 ms. The CR oscillator clock has an oscillation time of between several µs and several ms.


(4) Power-on Reset

 $(V_{SS} = 0.0 \text{ V}, \text{ } T_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Condition	Value		Unit	Remarks
Falameter	Symbol	Condition	Min	Max	Omt	nemaiks
Power supply rising time	tR	—	—	50	ms	
Power supply cutoff time	toff		1	—	ms	Wait time until power-on

Note: A sudden change of power supply voltage may activate the power-on reset function. When changing the power supply voltage during the operation, set the slope of rising to a value below within 20 mV/ms as shown below.

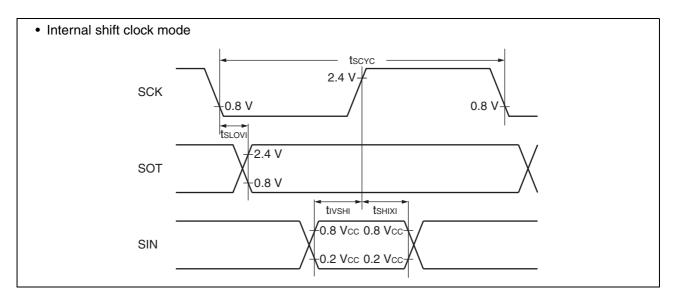
(5) Peripheral Input Timing

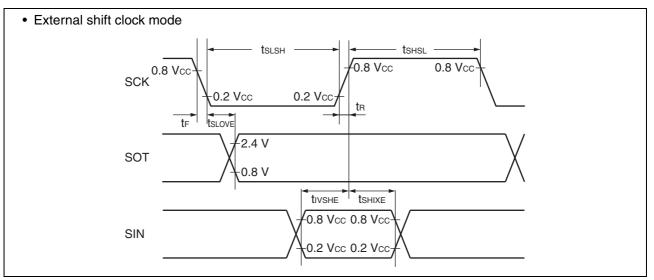
(Vcc = 3.0 V to 3.6 V, Vss = 0.0 V, $T_{\text{A}} = -40^{\circ}C$ to $+85^{\circ}C)$

Parameter	Symbol	Pin name	Va	Unit		
Faranieter	Symbol	Finnanie	Min Max		Unit	
Peripheral input "H" pulse width	tiliн	INT02 to INT07, EC0, EC1	2 t MCLK [*]	—	ns	
Peripheral input "L" pulse width	tını∟	111102 to 111107, ECO, ECT	2 tmclk*	—	ns	

*: See "(2) Source Clock/Machine Clock" for tmclk.

(6) LIN-UART Timing


Sampling is executed at the rising edge of the sampling $clock^{*1}$, and serial clock delay is disabled^{*2}. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 0)

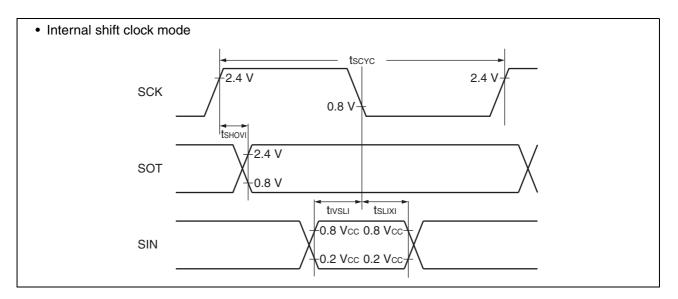

	-	•	$(V_{\rm CC} = 3.0 \text{ V to } 3.6 \text{ V},$	Vss = 0.0 V, T	$A = -40^{\circ}C \text{ to } +$	85°C)
Parameter	Symbol	Pin name	Condition	Va	lue	Unit
Farameter	Symbol	Fininanie			Max	Unit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³	—	ns
$SCK \downarrow \to SOT$ delay time	tslovi	SCK, SOT	Internal clock operation output pin:	-95	+95	ns
$Valid\:SIN\toSCK\:\uparrow$	tıvsнı	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}$	tмськ*3 + 190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixi	SCK, SIN		0	—	ns
Serial clock "L" pulse width	tslsh	SCK		$3 t$ MCLK $^{*3} - t$ R	—	ns
Serial clock "H" pulse width	ts∺s∟	SCK		t мськ* ³ + 95	—	ns
SCK $\downarrow \rightarrow$ SOT delay time	tslove	SCK, SOT	External clock	_	2 tмськ*3 + 95	ns
$Valid\:SIN\toSCK\:\uparrow$	tivshe	SCK, SIN	operation output pin:	190	—	ns
SCK $\uparrow \rightarrow$ valid SIN hold time	tshixe	SCK, SIN	C∟ = 80 pF + 1 TTL	t мськ* ³ + 95	—	ns
SCK fall time	t⊧	SCK		_	10	ns
SCK rise time	tR	SCK		_	10	ns

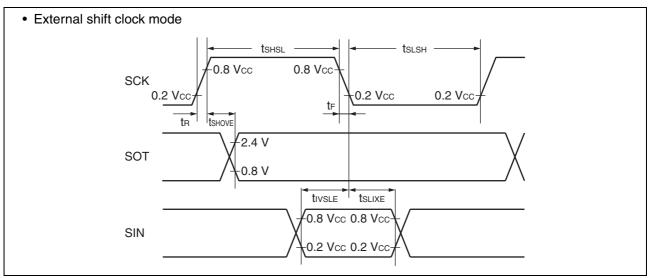
*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

*3: See "(2) Source Clock/Machine Clock" for tmclk.

Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is disabled^{*2}. (ESCR register: SCES bit = 1, ECCR register: SCDE bit = 0)


Deremeter	Symbol	Pin name	Condition	Va	lue	Unit
Parameter	Symbol	Pin name	Condition	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t мс∟к* ³	—	ns
SCK $\uparrow \rightarrow$ SOT delay time	t shovi	SCK, SOT	Internal clock operation output pin:	-95	+95	ns
$Valid\:SIN\toSCK\downarrow$	tivsli	SCK, SIN	$C_{L} = 80 \text{ pF} + 1 \text{ TTL}$	tмськ*3 + 190	—	ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	tslixi	SCK, SIN		0	—	ns
Serial clock "H" pulse width	t s∺s∟	SCK		3 t мськ*3 – tв	—	ns
Serial clock "L" pulse width	ts∟sн	SCK		t мськ*3 + 95	—	ns
SCK $\uparrow \rightarrow$ SOT delay time	t shove	SCK, SOT	External clock	—	2 tмськ*3 + 95	ns
Valid SIN $ ightarrow$ SCK \downarrow	tivsle	SCK, SIN	operation output pin:	190	—	ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	tslixe	SCK, SIN	C∟ = 80 pF + 1 TTL	tмськ*3 + 95	—	ns
SCK fall time	t⊧	SCK		—	10	ns
SCK rise time	tR	SCK		_	10	ns

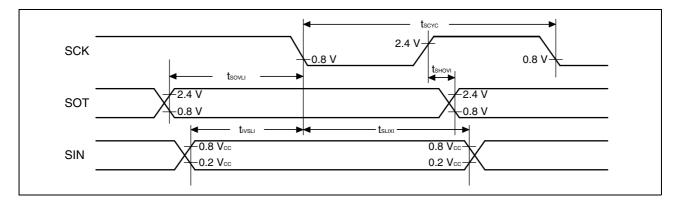

 $(V_{cc} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function used to delay the output signal of the serial clock for half the clock.

*3: See "(2) Source Clock/Machine Clock" for tmclk.

Sampling is executed at the rising edge of the sampling clock^{*1}, and serial clock delay is enabled^{*2}. (ESCR register: SCES bit = 0, ECCR register: SCDE bit = 1)


 $(V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

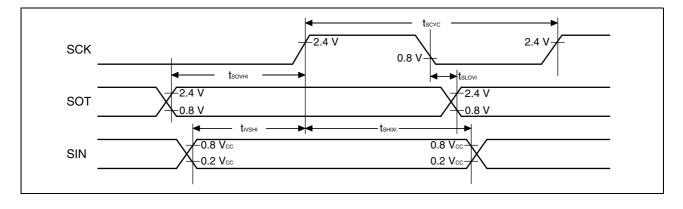
Baramatar	Symbol	Pin name	Condition	Val	ue	Unit
Farameter	Parameter Symbol Pin name		Condition	Min	Max	Unit
Serial clock cycle time	tscyc	SCK		5 t мськ* ³		ns
SCK $\uparrow \rightarrow$ SOT delay time	tshovi	SCK, SOT	Internal clock	-95	+95	ns
Valid SIN $ ightarrow$ SCK \downarrow	tivsli	SCK, SIN	operation output pin:	tмськ*3 + 190		ns
$SCK \downarrow \to valid \; SIN \; hold \; time$	tslixi	SCK, SIN	C∟ = 80 pF + 1 TTL	0		ns
$SOT \to SCK \downarrow delay time$	tsovu	SCK, SOT		_	4 t MCLK*3	ns

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See "(2) Source Clock/Machine Clock" for tmclk.

Sampling is executed at the falling edge of the sampling $clock^{*1}$, and serial clock delay is enabled^{*2}. (ESCR register: SCES bit = 1, ECCR register: SCDE bit = 1)


Value Parameter Symbol Pin name Condition Unit Min Max Serial clock cycle time SCK 5 tmclk*3 tscyc ns SCK $\downarrow \rightarrow$ SOT delay time SCK, SOT -95 tslovi +95ns Internal clock Valid SIN \rightarrow SCK \uparrow tмськ*3 + 190 SCK, SIN operation output pin: tivshi ____ ns $C_L = 80 \text{ pF} + 1 \text{ TTL}$ SCK $\uparrow \rightarrow$ valid SIN hold time SCK, SIN tshixi 0 ns ____ SOT \rightarrow SCK \uparrow delay time SCK, SOT ____ 4 t_{MCLK}*3 tsovhi ns

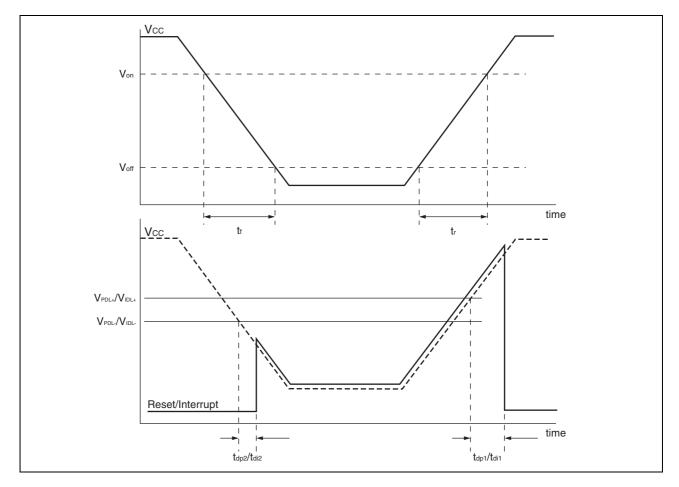
 $(V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

*1: There is a function used to choose whether the sampling of reception data is performed at a rising edge or a falling edge of the serial clock.

*2: The serial clock delay function is a function that delays the output signal of the serial clock for half clock.

*3: See "(2) Source Clock/Machine Clock" for tmclk.

(7) Low-voltage Detection


$(V_{SS} = 0.0 \text{ V}, V_{CC} = 1.8 \text{ V to } 3.6 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$										
Parameter	Symbol		Value		Unit	Remarks				
	• ,	Min	Тур	Max	•					
Power release voltage 0	VPDL0+	1.83	1.93	2.03	V	At power supply rise				
Power detection voltage 0	VPDL0-	1.80	1.90	2.00	V	At power supply fall				
Power release voltage 1	VPDL1+	2.25	2.40	2.55	V	At power supply rise				
Power detection voltage 1	VPDL1-	2.20	2.35	2.50	V	At power supply fall				
Power release voltage 2	VPDL2+	2.80	2.95	3.10	V	At power supply rise				
Power detection voltage 2	VPDL2-	2.70	2.85	3.00	V	At power supply fall				
Interrupt release voltage 0	VIDL0+	2.03	2.18	2.33	V	At power supply rise				
Interrupt detection voltage 0	VIDL0-	2.00	2.15	2.30	V	At power supply fall				
Interrupt release voltage 1	VIDL1+	2.25	2.40	2.55	V	At power supply rise				
Interrupt detection voltage 1	VIDL1-	2.20	2.35	2.50	V	At power supply fall				
Interrupt release voltage 2	VIDL2+	2.46	2.61	2.76	V	At power supply rise				
Interrupt detection voltage 2	VIDL2-	2.40	2.55	2.70	V	At power supply fall				
Interrupt release voltage 3	VIDL3+	2.67	2.82	2.97	V	At power supply rise				
Interrupt detection voltage 3	VIDL3-	2.60	2.75	2.90	V	At power supply fall				
Interrupt release voltage 4	VIDL4+	2.90	3.10	3.30	V	At power supply rise				
Interrupt detection voltage 4	VIDL4-	2.80	3.00	3.20	V	At power supply fall				
Power supply start voltage	Voff	_		1.8	V					
Power supply end voltage	Von	3.3	_	—	V					
Power supply voltage change time (at power supply rise)	tr	3000	_		μs	Slope of power supply that the reset release signal generates within the rating (VPDL+/VIDL+)				

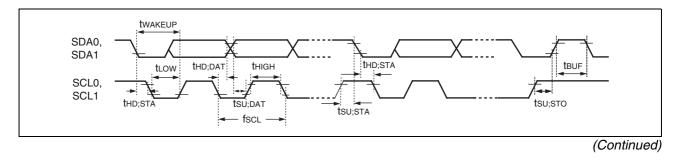
 $(V_{SS} = 0.0 \text{ V}, V_{CC} = 1.8 \text{ V} \text{ to } 3.6 \text{ V}, T_A = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

(Continued)

(Vss = 0.0 V, Vcc = 1.8 V to 3.6 V, T_{A} = $-40^{\circ}C$ to $+85^{\circ}C)$

Parameter	Symbol		Value		Unit	Remarks
Falameter	Symbol	Min	Тур	Max	Unit	nelliaiks
Power supply voltage change time (at power supply fall)	tr	3000	_	_	μs	Slope of power supply that the reset detection signal generates within the rating (VPDL-/VIDL-)
Power reset release delay time	t _{dp1}	10	_	300	μs	
Power reset detection delay time	t _{dp2}	_	_	150	μs	
Interrupt reset release delay time	t di1	10	_	200	μs	
Interrupt reset detection delay time	tdi2	_	_	150	μs	

(8) I²C Timing


		-			Va	lue		
Parameter	Symbol	Pin name	Condition		dard- ode	Fast-	mode	Unit
				Min	Max	Min	Max	
SCL clock frequency	fsc∟	SCL0, SCL1		0	100	0	400	kHz
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	thd;sta	SCL0, SCL1, SDA0, SDA1		4.0	_	0.6	_	μs
SCL clock "L" width	t∟ow	SCL0, SCL1		4.7	_	1.3	_	μs
SCL clock "H" width	tніgн	SCL0, SCL1		4.0	_	0.6	—	μs
(Repeated) START condition hold time SCL $\uparrow \rightarrow$ SDA \downarrow	tsu;sta	SCL0, SCL1, SDA0, SDA1		4.7	_	0.6	_	μs
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	t hd;dat	SCL0, SCL1, SDA0, SDA1	R = 1.7 kΩ, C = 50 pF*1	0	3.45* ²	0	0.9* ³	μs
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsu;dat	SCL0, SCL1, SDA0, SDA1		0.25	_	0.1	_	μs
STOP condition setup time SCL $\uparrow \rightarrow$ SDA \uparrow	tsu;sto	SCL0, SCL1, SDA0, SDA1		4	_	0.6	_	μs
Bus free time between STOP condition and START condition	tbur	SCL0, SCL1, SDA0, SDA1		4.7	_	1.3	_	μs

 $(V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

*1: R represents the pull-up resistor of the SCL0/1 and SDA0/1 lines, and C the load capacitor of the SCL0/1 and SDA0/1 lines.

*2: The maximum thd;Dat in the Standard-mode is applicable only when the time during which the device is holding the SCL signal at "L" (tLow) does not extend.

*3: A Fast-mode I²C-bus device can be used in a Standard-mode I²C-bus system, provided that the condition of $t_{SU;DAT} \ge 250$ ns is fulfilled.

Dama i	Sym-	Pin	0	Valu	ue*2		40 0 to +63 0)
Parameter	bol	name	Condition	Min	Мах	Unit	Remarks
SCL clock "L" width	t∟ow	SCL0, SCL1		(2 + nm/2)tмськ – 20	_	ns	Master mode
SCL clock "H" width	tніgн	SCL0, SCL1		(nm/2)tмськ – 20	(nm/2)tмс∟к + 20	ns	Master mode
START condition hold time	thd;sta	SCL0, SCL1, SDA0, SDA1		(—1 + nm/2)tмськ — 20	(-1 + nm)t _{MCLK} + 20	ns	Master mode Maximum value is applied when m, $n = 1, 8$. Otherwise, the minimum value is applied.
STOP condition setup time	tsu;sто	SCL0, SCL1, SDA0, SDA1		(1 + nm/2)tмс∟к – 20	(1 + nm/2)t _{MCLK} + 20	ns	Master mode
START condition setup time	tsu;sta	SCL0, SCL1, SDA0, SDA1		(1 + nm/2)tмс∟к – 20	(1 + nm/2)tмськ + 20	ns	Master mode
Bus free time between STOP condition and START condition	teur	SCL0, SCL1, SDA0, SDA1	R = 1.7 kΩ, C = 50 pF*1	(2 nm + 4)tмс∟к — 20	—	ns	
Data hold time	thd;dat	SCL0, SCL1, SDA0, SDA1		3 tмськ — 20	_	ns	Master mode
Data setup time	tsu;dat	SCL0, SCL1, SDA0, SDA1		(—2 + nm/2)tмськ — 20	(—1 + nm/2)tмськ + 20	ns	Master mode When assuming that "L" of SCL is not extended, the minimum value is applied to first bit of continuous data. Otherwise, the maximum value is applied.
Setup time between clearing inter- rupt and SCL rising	tsu;int	SCL0, SCL1		(nm/2)t _{MCLK} – 20	(1 + nm/2)t _{мськ} + 20	ns	Minimum value is applied to interrupt at 9th SCL \downarrow . Maximum value is applied to the interrupt at the 8th SCL \downarrow .

(Vcc = 3.0 V to 3.6 V, Vss = 0.0 V, T_{A} = $-40^{\circ}C$ to $+85^{\circ}C)$

(Continued)

Parameter	Sym-	Pin name	Condition	Value*2	,	Unit	$\mathbf{Remarks}$
Parameter	bol	Pin name	Condition	Min	Max	Unit	Remarks
SCL clock "L" width	t∟ow	SCL0, SCL1		4 tмськ – 20		ns	At reception
SCL clock "H" width	tніgн	SCL0, SCL1		4 tмськ — 20		ns	At reception
START condition detection	t hd;sta	SCL0, SCL1, SDA0, SDA1		2 tмсік — 20	_	ns	Undetected when 1 tmclk is used at reception
STOP condition detection	tsu;sto	SCL0, SCL1, SDA0, SDA1		2 tmclk - 20		ns	Undetected when 1 tmclk is used at reception
RESTART condition detection condition	tsu;sta	SCL0, SCL1, SDA0, SDA1		2 tmclk - 20	_	ns	Undetected when 1 t _{MCLK} is used at reception
Bus free time	tBUF	SCL0, SCL1, SDA0, SDA1	R = 1.7 kΩ, C = 50 pF*1	2 тмсік — 20	—	ns	At reception
Data hold time	t hd;dat	SCL0, SCL1, SDA0, SDA1	·	2 тмськ — 20	—	ns	At slave transmission mode
Data setup time	tsu;dat	SCL0, SCL1, SDA0, SDA1		$t_{\text{LOW}} - 3 t_{\text{MCLK}} - 20$	_	ns	At slave transmission mode
Data hold time	t hd;dat	SCL0, SCL1, SDA0, SDA1		0	—	ns	At reception
Data setup time	tsu;dat	SCL0, SCL1, SDA0, SDA1		t мсlк — 20	—	ns	At reception
SDA↓ → SCL↑ (at wakeup function)	twakeup	SCL0, SCL1, SDA0, SDA1		Oscillation stabilization wait time +2 tмськ – 20		ns	

 $(V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}, \text{ V}_{SS} = 0.0 \text{ V}, \text{ T}_{A} = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

*1: R represents the pull-up resistor of the SCL0/1 and SDA0/1 lines, and C the load capacitor of the SCL0/1 and SDA0/1 lines.

*2: • See "(2) Source Clock/Machine Clock" for tMCLK.

- m represents the CS4 bit and CS3 bit (bit4 and bit3) in the I²C clock control register (ICCR0).
- n represents the CS2 bit to CS0 bit (bit2 to bit0) in the I²C clock control register (ICCR0).
- The actual timing of I²C is determined by the values of m and n set by the machine clock (t_{MCLK}) and the CS4 to CS0 bits in the ICCR0 register.

• Standard-mode:

m and n can be set to values in the following range: 0.9 MHz < t_{MCLK} (machine clock) < 10 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

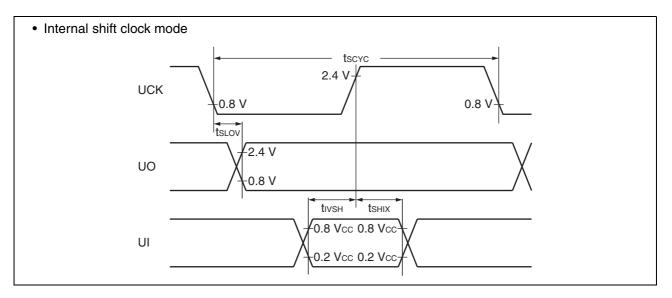
 $\begin{array}{l} (m, n) = (1, 8) \\ (m, n) = (1, 22), (5, 4), (6, 4), (7, 4), (8, 4) \\ (m, n) = (1, 38), (5, 8), (6, 8), (7, 8), (8, 8) \\ (m, n) = (1, 98) \end{array}$

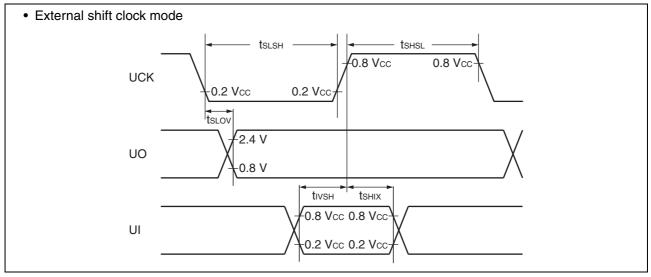
: 0.9 MHz < $t_{MCLK} \le 1$ MHz : 0.9 MHz < $t_{MCLK} \le 2$ MHz : 0.9 MHz < $t_{MCLK} \le 4$ MHz : 0.9 MHz < $t_{MCLK} \le 10$ MHz

• Fast-mode:

m and n can be set to values in the following range: $3.3 \text{ MHz} < t_{MCLK}$ (machine clock) < 10 MHz. The usable frequencies of the machine clock are determined by the settings of m and n as shown below.

(m, n) = (1, 8) : 3.3 MHz < t_{MCLK} ≤ 4 MHz


 $(m, n) = (1, 22), (5, 4) \qquad : 3.3 \text{ MHz} < t_{\text{MCLK}} \le 8 \text{ MHz}$


 $(m,\,n)=(6,\,4) \qquad \qquad : 3.3 \ MHz < t_{\text{MCLK}} \leq 10 \ MHz$

(9) UART/SIO, Serial I/O Timing

	3	(Vcc	= 3.0 V to 3.6 V,	Vss = 0.0 V, T	$A = -40^{\circ}C$ to	+85°C)
Parameter	Symbol	Pin name	Condition	Va	— Unit	
Falameter	Symbol	Finname	Condition	Min	Max	Onne
Serial clock cycle time	tscyc	UCK		4 t мськ*	_	ns
$UCK \downarrow \to UO \text{ time}$	tslov	UCK, UO	Internal clock	-190	+190	ns
Valid UI \rightarrow UCK \uparrow	tıvsн	UCK, UI	operation	2 t мськ*		ns
$UCK \uparrow \to valid \; UI \; hold \; time$	tsнix	UCK, UI		2 t мськ*		ns
Serial clock "H" pulse width	tshsl	UCK		4 t мськ*		ns
Serial clock "L" pulse width	ts∟sн	UCK	1	4 t мськ*		ns
$UCK \downarrow \to UO \text{ time}$	tslov	UCK, UO	External clock	_	190	ns
Valid UI \rightarrow UCK \uparrow	tıvsн	UCK, UI		2 t мськ*		ns
$UCK \uparrow \to valid \; UI \; hold \; time$	tsнix	UCK, UI		2 t мськ*		ns

*: See "(2) Source Clock/Machine Clock" for tMCLK.

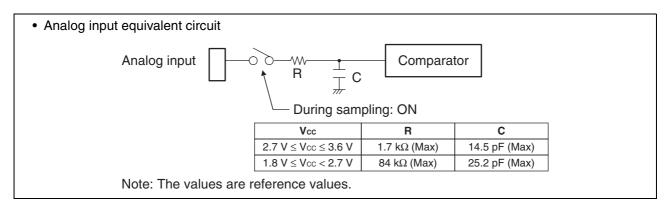
ĬĬTSU

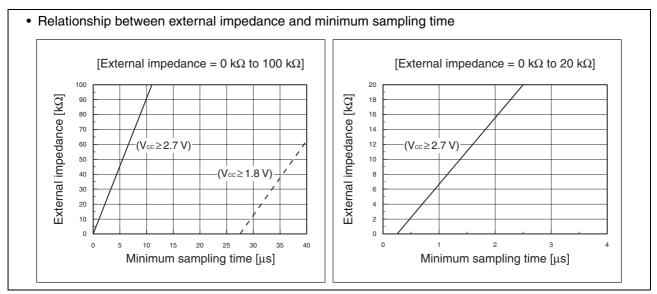
FU

48

5. A/D Converter

(1) A/D Converter Electrical Characteristics

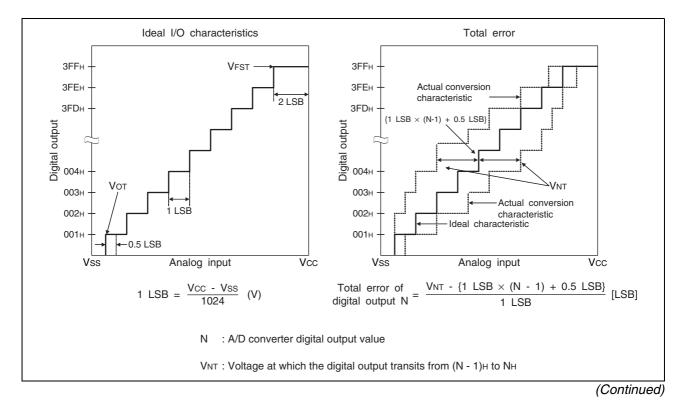

 $(V_{CC} = 1.8 \text{ V to } 3.6 \text{ V}, \text{ Vss} = 0.0 \text{ V}, \text{ T}_{\text{A}} = -40^{\circ}\text{C} \text{ to } +85^{\circ}\text{C})$

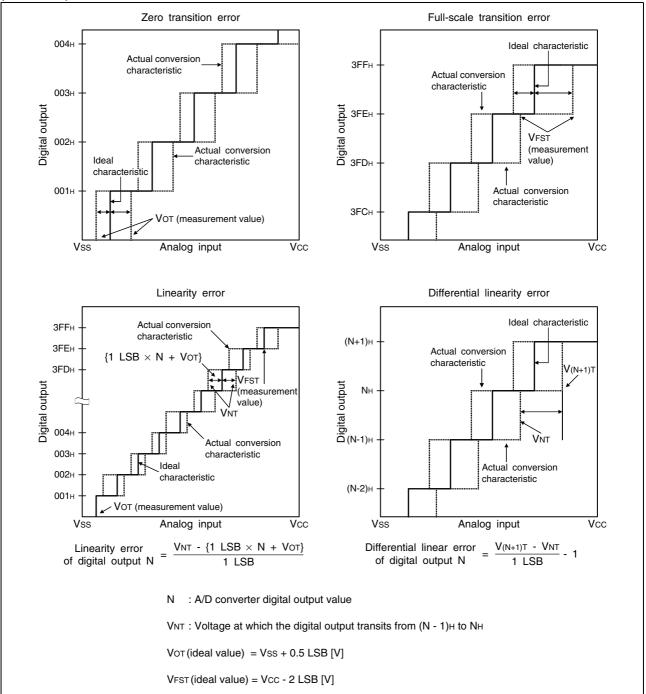

Parameter	Symbol		Value		Unit	Remarks
Parameter	Symbol	Min Typ		Max	Unit	Remarks
Resolution			—	10	bit	
Total error		-3	—	+3	LSB	
Linearity error	—	-2.5		+2.5	LSB	
Differential linear error		-1.9	_	+1.9	LSB	
Zero transition	Vot	Vss - 1.5 LSB	Vss + 0.5 LSB	Vss + 2.5 LSB	V	$2.7~V \leq V_{CC} \leq 3.6~V$
voltage	VOI	$V_{\text{SS}} - 0.5 \ \text{LSB}$	Vss + 1.5 LSB	Vss + 3.5 LSB	V	$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$
Full-scale transition	VFST	Vcc - 3.5 LSB	Vcc - 1.5 LSB	Vcc + 0.5 LSB	V	$2.7~V \le V_{CC} \le 3.6~V$
voltage	VESI	Vcc-2.5 LSB	Vcc - 0.5 LSB	Vcc + 1.5 LSB	V	$1.8 \text{ V} \le \text{Vcc} < 2.7 \text{ V}$
Compare time		1.3	—	140	μs	$2.7~V \leq V_{CC} \leq 3.6~V$
Compare time		20	—	140	μο	$1.8 \text{ V} \leq \text{Vcc} < 2.7 \text{ V}$
Sampling time		0.4	_	_	μs	$\begin{array}{l} 2.7 \ V \leq V_{CC} \leq 3.6 \ V, \\ \text{with external} \\ \text{impedance} < 1.8 \ k\Omega \end{array}$
Sampling time		30			μs	$\begin{array}{l} 1.8 \ V \leq V_{CC} < 2.7 \ V, \\ \text{with external} \\ \text{impedance} < 14.8 \ k\Omega \end{array}$
Analog input current	Iain	-0.3	—	+0.3	μA	
Analog input voltage	VAIN	Vss	—	Vcc	V	

(2) Notes on Using the A/D Converter

• External impedance of analog input and its sampling time

 The A/D converter has a sample and hold circuit. If the external impedance is too high to keep sufficient sampling time, the analog voltage charged to the capacitor of the internal sample and hold circuit is insufficient, adversely affecting A/D conversion precision. Therefore, to satisfy the A/D conversion precision standard, considering the relationship between the external impedance and minimum sampling time, either adjust the register value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. In addition, if sufficient sampling time cannot be secured, connect a capacitor of about 0.1 µF to the analog input pin.


• A/D conversion error


As IVcc–VssI decreases, the A/D conversion error increases proportionately.

(3) Definitions of A/D Converter Terms

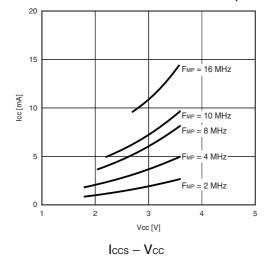
- Resolution It indicates the level of analog variation that can be distinguished by the A/D converter.
 - When the number of bits is 10, analog voltage can be divided into $2^{10} = 1024$.
- Linearity error (unit: LSB)
 It indicates how much an actual conversion value deviates from the straight line connecting the zero transition point ("00 0000 0000" ← → "00 0000 0001") of a device to the full-scale transition point ("11 1111 1111" ← → "11 1111 1110") of the same device.
- Differential linear error (unit: LSB) It indicates how much the input voltage required to change the output code by 1 LSB deviates from an ideal value.
- Total error (unit: LSB)

It indicates the difference between an actual value and a theoretical value. The error can be caused by a zero transition error, a full-scale transition errors, a linearity error, a quantum error, or noise.

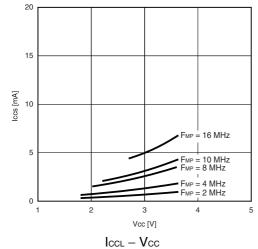
Parameter		Value		Unit	Remarks
Parameter	Min	Тур	Max	Unit	Remarks
Sector erase time (2 Kbyte sector)	_	0.2*1	0.5* ²	s	The time of writing 00 _H prior to erasure is excluded.
Sector erase time (16 Kbyte sector)	_	0.5*1	7.5* ²	s	The time of writing 00 _H prior to erasure is excluded.
Byte writing time	_	21	6100* ²	μs	System-level overhead is excluded.
Erase/write cycle	100000	_	—	cycle	
Power supply voltage at erase/ write	2.7	3.0	3.6	v	
Flash memory data retention time	20 * ³	_	_	year	Average T _A = +85°C

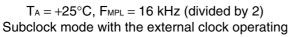
6. Flash Memory Write/Erase Characteristics

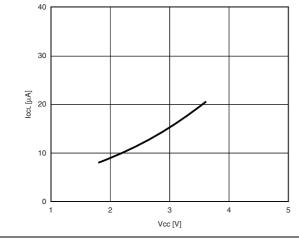
*1: $T_A = +25^{\circ}C$, $V_{CC} = 3.0$ V, 100000 cycles


*2: $T_A = +85^{\circ}C$, $V_{CC} = 2.7$ V, 100000 cycles

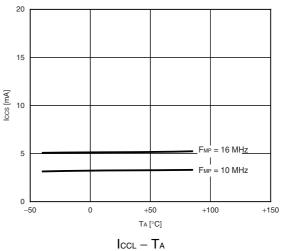
*3: This value is converted from the result of a technology reliability assessment. (The value is converted from the result of a high temperature accelerated test using the Arrhenius equation with the average temperature being +85°C).

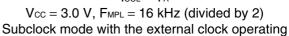

SAMPLE CHARACTERISTICS

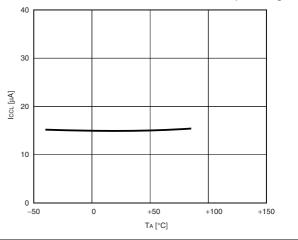

• Power supply current temperature characteristics


 $\label{eq:tau} \begin{array}{l} I_{CC}-V_{CC}\\ T_{A}=+25^{\circ}C,\ F_{MP}=2,\ 4,\ 8,\ 10,\ 16\ MHz\ (divided\ by\ 2)\\ Main\ clock\ mode\ with\ the\ external\ clock\ operating \end{array}$

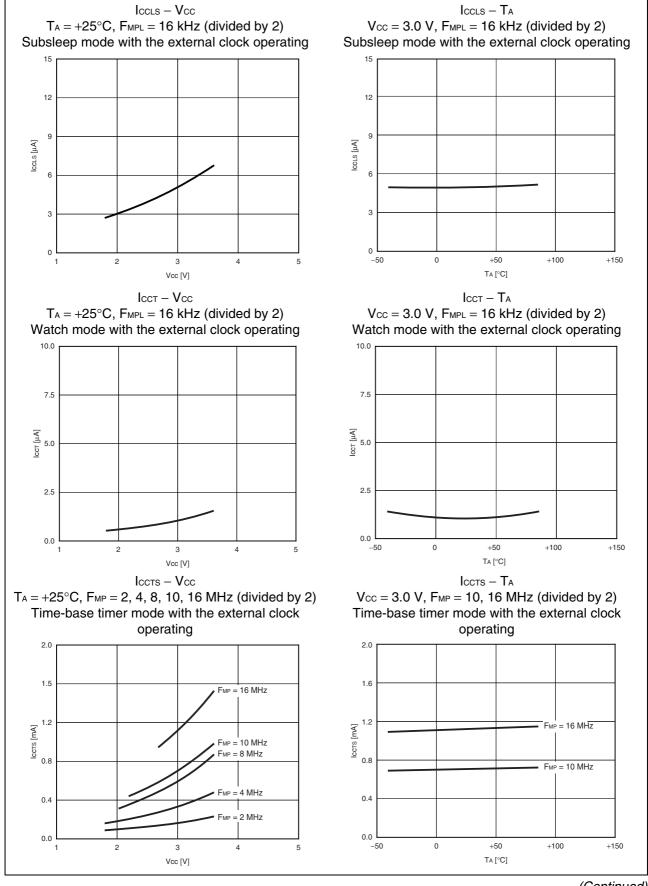
 $T_A = +25^{\circ}C$, $F_{MP} = 2, 4, 8, 10, 16$ MHz (divided by 2) Main sleep mode with the external clock operating

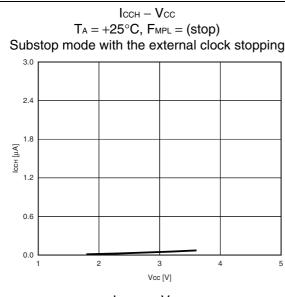





Icc – Ta $V_{CC} = 3.0 \text{ V}, F_{MP} = 10, 16 \text{ MHz}$ (divided by 2) Main clock mode with the external clock operating 20 15 = 16 MHz EMP lcc [mA] 10 = 10 MHz E 5 0 0 +50 +100 +150 -50 TA [°C]

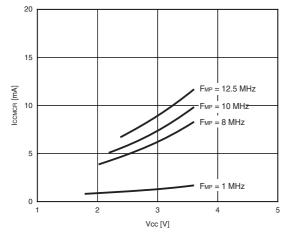
 $V_{CC} = 3.0 \text{ V}, \text{ } F_{MP} = 10, 16 \text{ } MHz \text{ (divided by 2)}$ Main sleep mode with the external clock operating

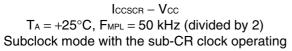


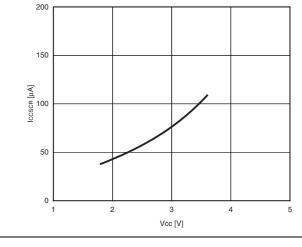


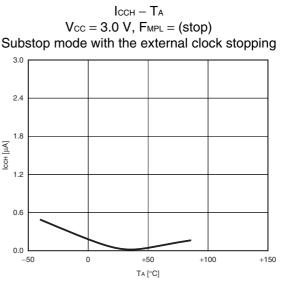
ITSU

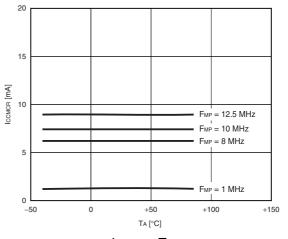
⁽Continued)



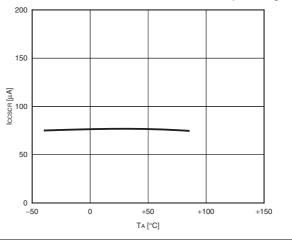

(Continued)

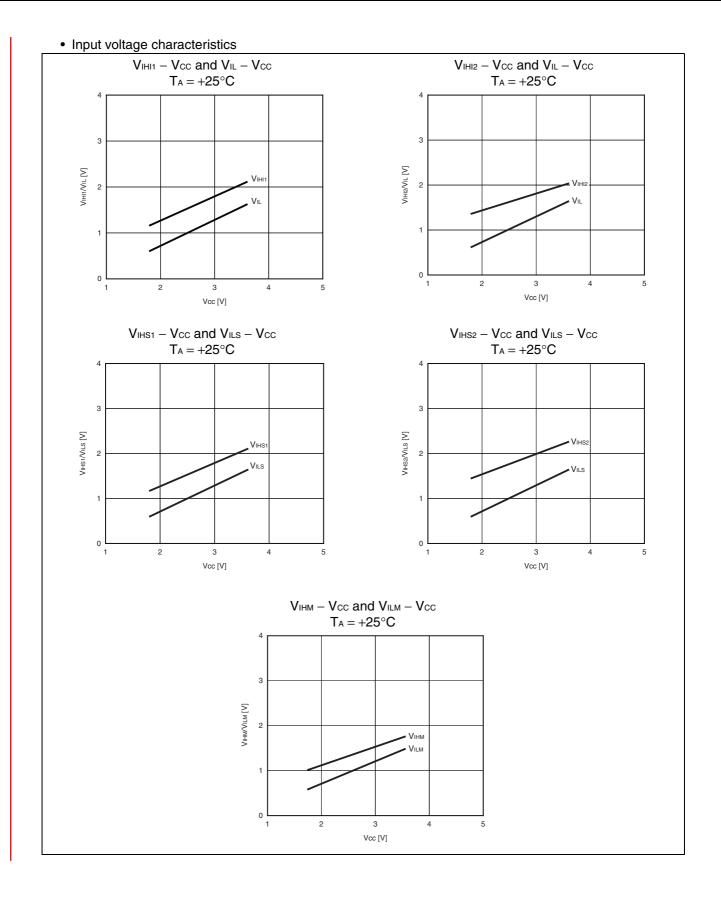



 $T_{\text{A}}=+25^{\circ}\text{C},\ F_{\text{MP}}=1,\ 8,\ 10,\ 12.5\ \text{MHz}$ (no division) Main clock mode with the main CR clock operating

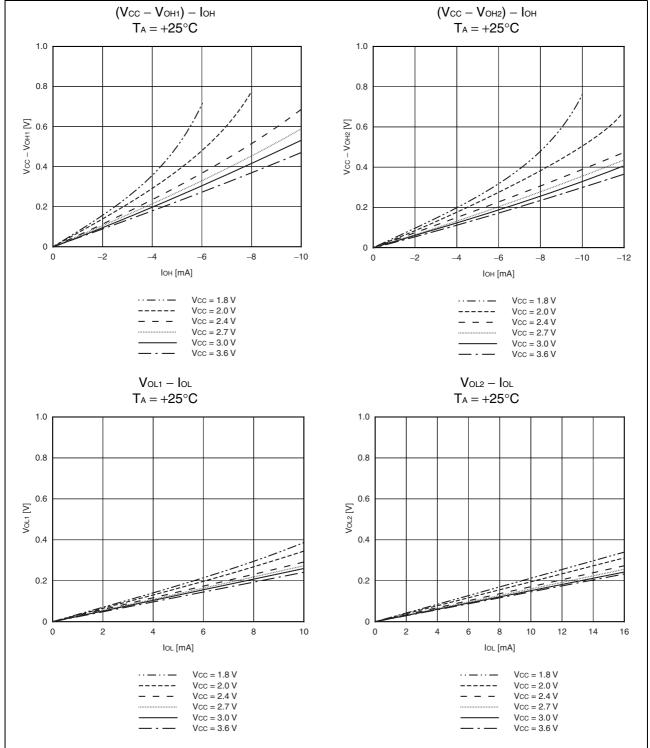


FUĬĪTSU

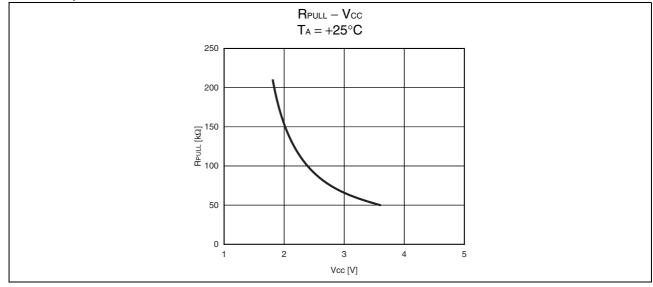



ICCMCR – TA

 $V_{\text{CC}}=3.0$ V, $F_{\text{MP}}=1,\,8,\,10,\,12.5$ MHz (no division) Main clock mode with the main CR clock operating



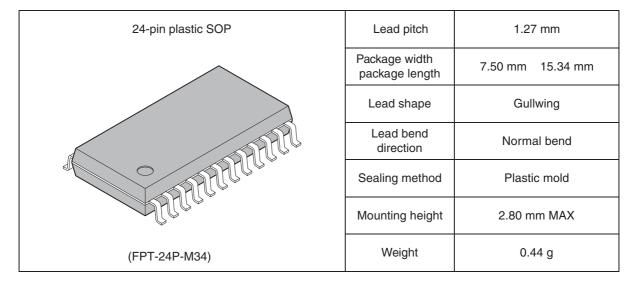
$$\label{eq:lccscr} \begin{split} & I_{\text{CCSCR}} - T_{\text{A}} \\ & V_{\text{CC}} = 3.0 \text{ V}, \text{ } F_{\text{MPL}} = 50 \text{ kHz} \text{ (divided by 2)} \\ & \text{Subclock mode with the sub-CR clock operating} \end{split}$$

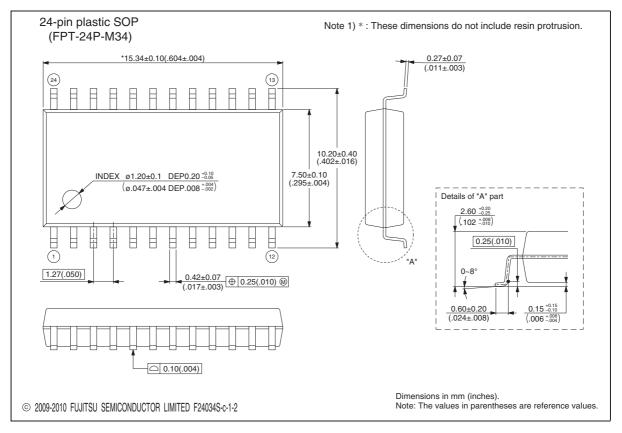


• Output voltage characteristics

• Pull-up characteristics

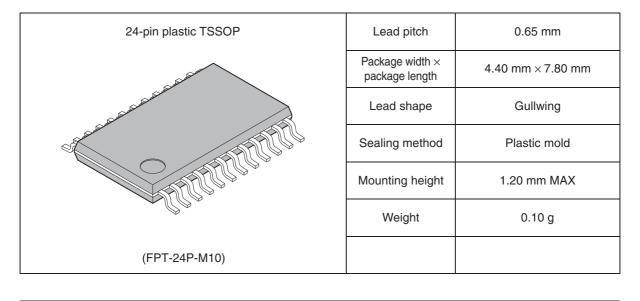
■ MASK OPTIONS

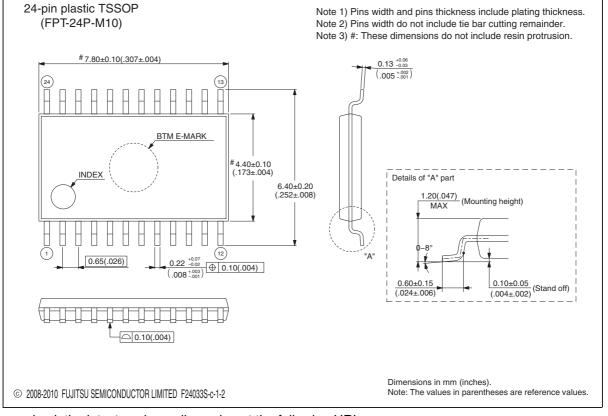

No.	Part Number	rt Number MB95F352E MB95F353E MB95F354E				
	Selectable/Fixed	Fixed				
1	Low-voltage detection reset	With low-voltage detection reset	Without low-voltage detection reset			
2	Reset	Without dedicated reset input	With dedicated reset input			

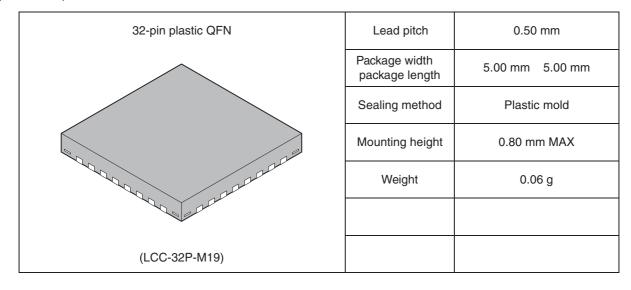


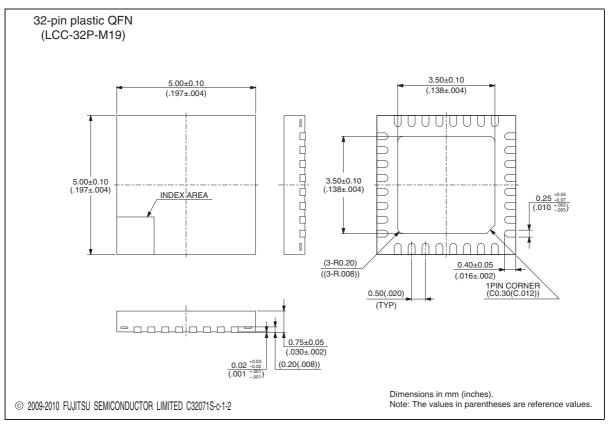
■ ORDERING INFORMATION

Part Number	Package
MB95F352EPF-G-SNE2 MB95F352LPF-G-SNE2 MB95F353EPF-G-SNE2 MB95F353LPF-G-SNE2 MB95F354EPF-G-SNE2 MB95F354LPF-G-SNE2	24-pin plastic SOP (FPT-24P-M34)
MB95F352EPFT-G-SNE2 MB95F352LPFT-G-SNE2 MB95F353EPFT-G-SNE2 MB95F353LPFT-G-SNE2 MB95F354EPFT-G-SNE2 MB95F354LPFT-G-SNE2	24-pin plastic TSSOP (FPT-24P-M10)
MB95F352EWQN-G-SNE1 MB95F352EWQN-G-SNERE1 MB95F352LWQN-G-SNE1 MB95F352LWQN-G-SNERE1 MB95F353EWQN-G-SNERE1 MB95F353EWQN-G-SNERE1 MB95F353LWQN-G-SNERE1 MB95F354EWQN-G-SNERE1 MB95F354EWQN-G-SNERE1 MB95F354LWQN-G-SNERE1	32-pin plastic QFN (LCC-32P-M19)


■ PACKAGE DIMENSION

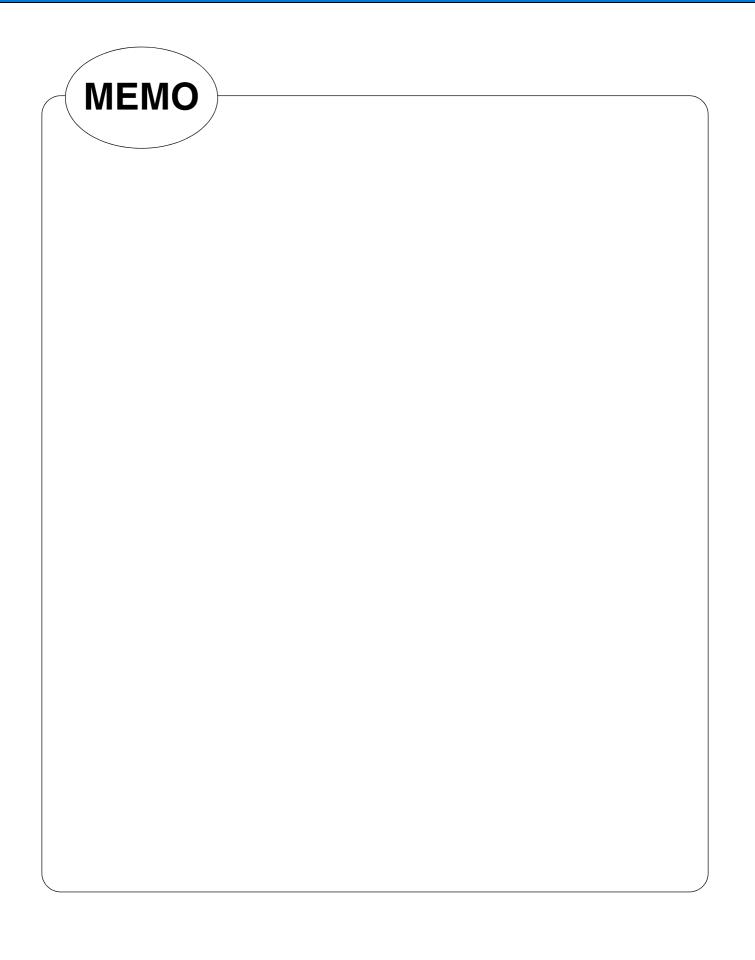



ITSU


Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/

Please check the latest package dimension at the following URL. http://edevice.fujitsu.com/package/en-search/


■ MAJOR CHANGES IN THIS EDITION

Page	Section	Details				
7	■ PIN ASSIGNMENT	Deleted the HCLK1 pin and the HCLK2 pin.				
9	■ PIN DESCRIPTION (24-pin MCU)	Deleted the HCLK1 pin and the HCLK2 pin.				
11	■ PIN DESCRIPTION (32-pin MCU)	Deleted the HCLK1 pin and the HCLK2 pin.				
16	BLOCK DIAGRAM	Deleted the HCLK1 pin and the HCLK2 pin.				
26	ELECTRICAL CHARACTERISTICS3. DC Characteristics	Changed the value of Vcc in the operating conditions. 3.0 V to 3.6 V \rightarrow 2.7 V to 3.6 V				
27		Changed the value of $V_{\rm CC}$ in the operating conditions. 3.6 V \rightarrow 1.8 V to 3.6 V				
		Changed the typical (Typ) values and the maximum (Max) values of Icc.				
			Value	6	Unit	Remarks
		Min	Тур	Мах		
			13.6	22.4	mA	Flash memory product (except writing and erasing)
		_	38.1	44.9	mA	Flash memory product (at writing and erasing)
		_	15.1	24.6	mA	At A/D conversion
		\rightarrow				
		Value				
		Min	Typ*3	Max	Unit	Remarks
		_	11.2	20	mA	Flash memory product (except writing and erasing)
		_	26.2	38	mA	Flash memory product (at writing and erasing)
		—	13.3	23.4	mA	At A/D conversion
		Change $6.3 \rightarrow 5$ Change Typ : 2 Max : 4	5.2 ed the T $20 \rightarrow 13$	yp valu 5		ccs. I the Max value of Icc∟.
		Changed the Typ value and the Max value of Iccls. Typ $: 6.3 \rightarrow 5$ Max $: 30 \rightarrow 15$				
		Changed the Typ value and the Max value of I _{CCT} . Typ : 2 \rightarrow 1 Max : 22 \rightarrow 10				

(Continued)

Page	Section	Details				
27	 ELECTRICAL CHARACTERISTICS 3. DC Characteristics 	Changed the Typ value of ICCMCR. $11 \rightarrow 9$				
28		Changed the Typ value of Iccscr. $110 \rightarrow 77$				
		Changed the Typ value of Iccts. $1.8 \rightarrow 1.1$				
		Changed the Typ value of I _{CCH} . $1 \rightarrow 0.1$				
		Changed the Typ value of I_{LVD} . 8 \rightarrow 6.4				
		Changed the Typ value of ICRH. $0.5 \rightarrow 0.25$				
		Added the following note: *3: $V_{CC} = 3.0 \text{ V}, \text{ T}_A = +25^{\circ}\text{C}$				
29	 ELECTRICAL CHARACTERISTICS 4. AC Characteristics (1) Obsetive Transmission 	Deleted all information about the HCLK1 pin and the HCLK2 pin in the table.				
30	(1) Clock Timing	Deleted HCLK1 and HCLK2 in the "• Input waveform generated when an external clock (main clock) is used".				
		Deleted the external connection diagram for the HCLK1 pin and HCLK2 pin in "• Figure of main clock input port external connection".				
43	■ ELECTRICAL CHARACTERISTICS 4. AC Characteristics	Deleted the following parameters: Power hysteresis width 0,				
	(7) Low-voltage Detection	Power hysteresis width 1,				
		Power hysteresis width 2, Interrupt hysteresis width 0,				
		Interrupt hysteresis width 1,				
		Interrupt hysteresis width 2, Interrupt hysteresis width 3,				
		Interrupt hysteresis width 4				
44		Deleted VPHYS/VIHYS from the diagram.				
		Added diagrams showing sample characteristics.				
61	■ ORDERING INFORMATION	Added the following part numbers for the 32-pin plastic QFN package (LCC-32P-M19):				
		MB95F352EWQN-G-SNE1 MB95F352LWQN-G-SNE1				
		MB95F352LWQN-G-SNET MB95F353EWQN-G-SNE1				
		MB95F353LWQN-G-SNE1				
		MB95F354EWQN-G-SNE1 MB95F354LWQN-G-SNE1				

The vertical lines marked on the left side of the page indicate the changes.

FUJITSU SEMICONDUCTOR LIMITED

Nomura Fudosan Shin-yokohama Bldg. 10-23, Shin-yokohama 2-Chome, Kohoku-ku Yokohama Kanagawa 222-0033, Japan Tel: +81-45-415-5858 *http://jp.fujitsu.com/fsl/en/*

For further information please contact:

North and South America

FUJITSU SEMICONDUCTOR AMERICA, INC. 1250 E. Arques Avenue, M/S 333 Sunnyvale, CA 94085-5401, U.S.A. Tel: +1-408-737-5600 Fax: +1-408-737-5999 http://us.fujitsu.com/micro/

Europe

FUJITSU SEMICONDUCTOR EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/semiconductor/

Korea

FUJITSU SEMICONDUCTOR KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

Asia Pacific

FUJITSU SEMICONDUCTOR ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel : +65-6281-0770 Fax : +65-6281-0220 http://www.fujitsu.com/sg/services/micro/semiconductor/

FUJITSU SEMICONDUCTOR SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel : +86-21-6146-3688 Fax : +86-21-6335-1605 http://cn.fujitsu.com/fmc/

FUJITSU SEMICONDUCTOR PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel : +852-2377-0226 Fax : +852-2376-3269 http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU SEMICONDUCTOR device; FUJITSU SEMICONDUCTOR does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU SEMICONDUCTOR assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU SEMICONDUCTOR or any third party or does FUJITSU SEMICONDUCTOR warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU SEMICONDUCTOR assumes no liability for any infringement of the intellectual property rights or other rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU SEMICONDUCTOR will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of overcurrent levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department