## 32-bit Microcontroller

**CMOS** 

## FR60 MB91460N Series

# MB91F463NA/F463NC/V460A

#### **■ DESCRIPTION**

MB91F463NA is a line of the general-purpose 32-bit RISC microcontrollers designed for embedded control applications which require high-speed real-time processing, such as consumer devices and on-board vehicle systems. MB91F463NA uses the FR60 CPU which is compatible with the FR\* CPUs.

MB91F463NA contains the LIN-USART and CAN controllers.

\*: FR, the abbreviation of FUJITSU RISC controller, is a line of products of Fujitsu Microelectronics Limited.

Note: MB91F463NC improved the features of MB91F463NA and updated the sector map for the flash memory. Please select MB91F463NC for the future development.

#### **■ FEATURES**

#### • FR60 CPU

- 32-bit RISC, load/store architecture, five-stage pipeline
- Maximum operating frequency: 80 MHz (oscillator frequency: 4 MHz; oscillator frequency multiplier: 20 (PLL clock multiplication method))
- 16-bit fixed-length instructions (basic instructions)
- Instruction execution speed: 1 instruction per cycle
- Instructions including memory-to-memory transfer, bit manipulation instructions, and barrel shift instructions: Instructions suitable for embedded applications
- Function entry/exit instructions and register data multi load store instructions: Instructions supporting C language
- Register interlock function: Facilitating assembly-language coding

(Continued)

For the information for microcontroller supports, see the following web site.

This web site includes the **"Customer Design Review Supplement"** which provides the latest cautions on system development and the minimal requirements to be checked to prevent problems before the system development.

http://edevice.fujitsu.com/micom/en-support/



• Built-in multiplier with instruction-level support

Signed 32-bit multiplication: 5 cycles Signed 16-bit multiplication: 3 cycles

- Interrupt (PC/PS saving): 6 cycles (16 priority levels)
- Harvard architecture allowing program access and data access to be executed simultaneously
- Instructions compatible with the FR family
- Internal peripheral resources
  - Flash memory capacity: 288 Kbytes
  - Internal RAM capacity: 8 Kbytes (Data RAM) + 2 Kbytes (Instruction/data RAM)
  - General-purpose port: Maximum 48 ports
  - DMAC (DMA Controller)

Maximum of 5 channels for able to operate simultaneously

2 transfer sources (internal peripheral/software)

Activation source can be selected by programs

Addressing mode specifies full 32-bit addresses (increment/decrement/fixed)

Transfer mode (burst transfer/step transfer/block transfer)

Transfer data size selectable from 8/16/32-bit

Multi-byte transfer capable (by programs)

DMAC descriptor in I/O areas (200<sub>H</sub> to 240<sub>H</sub>, 1000<sub>H</sub> to 1024<sub>H</sub>)

A/D converter (sequential comparison)

10-bit resolution: 8 channels

Conversion time: 1 µs (using at 5 V), 3 µs (using at 3.3 V)

- External interrupt inputs: 10 channels
- Bit search module (for REALOS)

Function to search from the MSB (most significant bit) for the position of the first "0", "1" or changed bit in a word

• LIN-USART (full duplex double buffer): 4 channels

Clock synchronous/asynchronous selectable

Sync-break detection

Internal dedicated baud rate generator

• I<sup>2</sup>C bus interface (Supports 400 kbps): 2 channels

Master/slave transmission and reception

Arbitration function, clock synchronization function

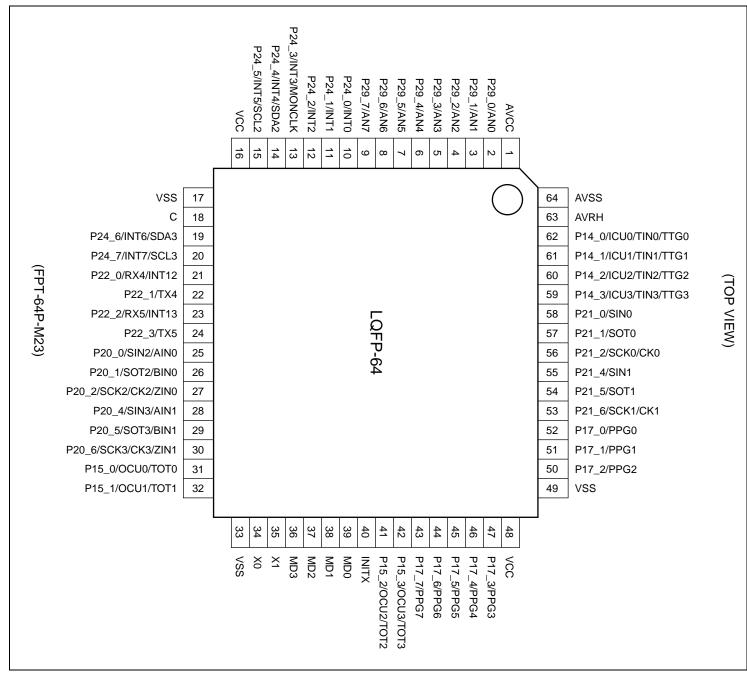
• CAN controller (C-CAN): 2 channels

Maximum transfer speed: 1 Mbps

32 transmission/reception message buffers

- 16-bit PPG timer: 8 channels
- 16-bit reload timer: 4 channels + 1 channel (exclusive A/D converter)
- 16-bit free-run timer: 4 channels
- Input capture: 4 channels
- Output compare: 4 channels
- 8/16-bit up/down counter: 2 channels (8-bit)/1channel (16-bit)
- · Watchdog timer
- Real-time clock
- Low-power consumption mode: Sleep/stop mode function

- Package: LQFP-64 (FPT-64P-M23)
- CMOS 0.18 μm technology
- 3.3 V only power supplies or 5 V only power supplies
- Operating temperature range: -40% to +85% (using at 5 V) -40% to +105% (using at 3.3 V)


## ■ PRODUCT LINEUP

| Part number Parameter             | MB91V460A                          | MB91F463NA<br>MB91F463NC |  |  |  |
|-----------------------------------|------------------------------------|--------------------------|--|--|--|
| Max core frequency<br>(CLKB)      | 80 MHz                             |                          |  |  |  |
| Max resource<br>frequency (CLKP)  | 40 MHz                             |                          |  |  |  |
| Max external bus frequency (CLKT) | 40 MHz                             | _                        |  |  |  |
| Max CAN frequency<br>(CLKCAN)     | 20 N                               | ЛНz                      |  |  |  |
| Technology                        | 0.35 μm                            | 0.18 μm                  |  |  |  |
| Watchdog Timer                    | Yes                                | No                       |  |  |  |
| Watchdog Timer<br>(CR oscillator) | Yes (disengageable)                | Yes                      |  |  |  |
| Bit search                        | Ye                                 | es                       |  |  |  |
| Reset input (INITX)               | Ye                                 | es                       |  |  |  |
| Hardware standby input (HSTX)     | Yes                                | No                       |  |  |  |
| Clock modulator                   | Yes                                |                          |  |  |  |
| Low-power mode                    | Yes                                |                          |  |  |  |
| DMAC                              | 5 channels                         |                          |  |  |  |
| MAC (μDSP)                        | No                                 |                          |  |  |  |
| MMU/MPU                           | MPU (16 channels)*                 | MPU (4 channels)*        |  |  |  |
| Flash memory                      | Emulation SRAM<br>32-bit read data | 288 Kbytes               |  |  |  |
| Flash protection                  | _                                  | Yes                      |  |  |  |
| Data RAM                          | 64 Kbytes                          | 8 Kbytes                 |  |  |  |
| Instruction/data RAM              | 64 Kbytes                          | 2 Kbytes                 |  |  |  |
| Flash-cache (instruction cache)   | 16 Kbytes                          | 4 Kbytes                 |  |  |  |
| Boot-ROM/BI-ROM                   | 4 Kbytes fixed                     | 4 Kbytes (BI-ROM)        |  |  |  |
| Real-time clock                   | 1 chai                             | nnels                    |  |  |  |
| Free-run timer                    | 8 channels                         | 4 channels               |  |  |  |
| ICU                               | 8 channels                         | 4 channels               |  |  |  |
| OCU                               | 8 channels                         | 4 channels               |  |  |  |
| 16-bit reload timer               | 8 channels                         | 4 channels + 1 channel   |  |  |  |
| 16-bit PPG                        | 16 channels                        | 8 channels               |  |  |  |

| Part number Parameter               | MB91V460A                                      | MB91F463NA<br>MB91F463NC                   |  |
|-------------------------------------|------------------------------------------------|--------------------------------------------|--|
| 16-bit PFM                          | 1 channel                                      | No                                         |  |
| Sound Generator                     | 1 channel                                      | No                                         |  |
| 8/16-bit<br>up/down counter         | 4 channels (8-bit) /<br>2 channels (16-bit)    | 2 channels (8-bit) /<br>1 channel (16-bit) |  |
| C_CAN                               | 6 channels (128 message buffers)               | 2 channels (32 message buffers)            |  |
| LIN-USART                           | 4 channels + 4 channels (FIFO) +<br>8 channels | 4 channels                                 |  |
| I <sup>2</sup> C (400 kbps)         | 4 channels                                     | 2 channels                                 |  |
| FR external bus                     | Yes (32-bit address, 32-bit data)              | No                                         |  |
| External interrupt                  | 16 channels                                    | 10 channels                                |  |
| NMI interrupts                      | Yes                                            | No                                         |  |
| Stepping motor controller (SMC)     | 6 channels                                     | No                                         |  |
| LCD controller (40 × 4)             | 1 channel                                      | No                                         |  |
| 10-bit A/D converter                | 32 channels                                    | 8 channels                                 |  |
| Alarm comparator                    | 2 channels                                     | No                                         |  |
| Clock supervisor                    | Yes                                            | No                                         |  |
| Main clock oscillator               | 4 Mi                                           | Hz                                         |  |
| Sub clock oscillator                | 32 kHz                                         | _                                          |  |
| CR oscillator                       | 100 kHz                                        | 100 kHz / 2 MHz                            |  |
| PLL                                 | ×2                                             | 20                                         |  |
| DSU4                                | Yes                                            | No                                         |  |
| EDSU                                | Yes (32 BP) *                                  | Yes (8 BP)*                                |  |
| Power supply voltage                | 3 V /                                          | 5 V                                        |  |
| Regulator                           | Ye                                             | s                                          |  |
| Power consumption                   | n.a.                                           | < 700 mW                                   |  |
| Temperature range (T <sub>A</sub> ) | 0 °C to +70 °C                                 | – 40 °C to + 105 °C                        |  |
| Package                             | BGA-660                                        | LQFP-64                                    |  |

<sup>\*:</sup> MPU channels use EDSU breakpoint registers (shared operation between MPU and EDSU).

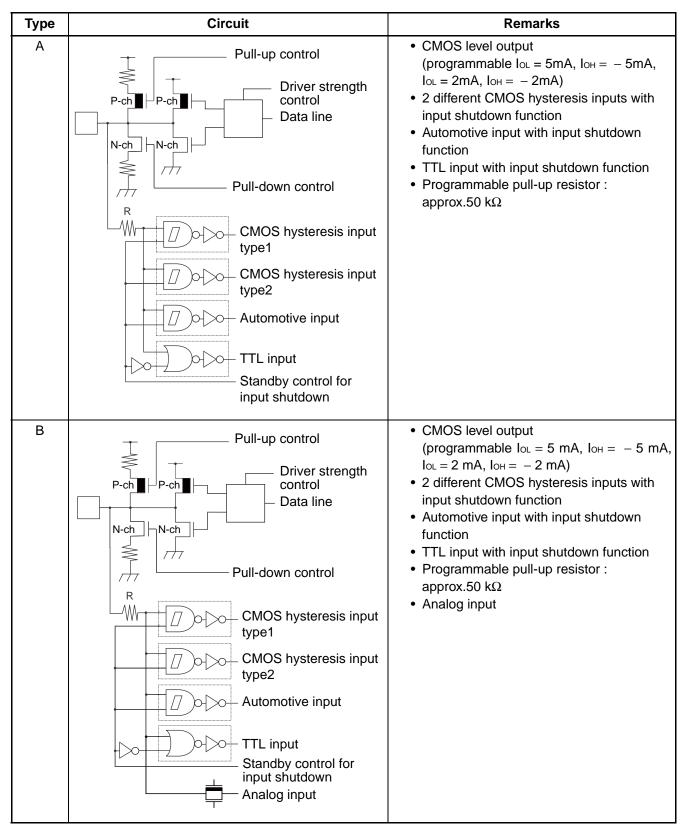
# PIN ASSIGNMENT

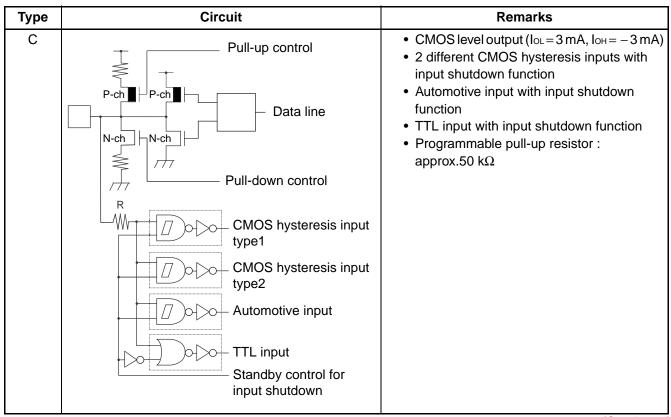


## **■ PIN DESCRIPTION**

| Pin no.  | Pin name       | I/O | I/O circuit<br>type* | Function                                    |
|----------|----------------|-----|----------------------|---------------------------------------------|
| 2 to 9   | P29_0 to P29_7 | I/O | В                    | General-purpose input/output ports          |
| 2 10 9   | AN0 to AN7     | 1/0 |                      | Analog input pins for A/D converter         |
| 10 to 12 | P24_0 to P24_2 | I/O | А                    | General-purpose input/output ports          |
| 10 10 12 | INT0 to INT2   | 1/0 | A                    | External interrupt input pins               |
|          | P24_3          |     |                      | General-purpose input/output port           |
| 13       | INT3           | I/O | Α                    | External interrupt input pins               |
|          | MONCLK         |     |                      | Clock monitor output pin                    |
|          | P24_4          |     |                      | General-purpose input/output port           |
| 14       | INT4           | I/O | С                    | External interrupt input pin                |
|          | SDA2           |     |                      | I <sup>2</sup> C bus data input/output pin  |
|          | P24_5          |     |                      | General-purpose input/output port           |
| 15       | INT5           | I/O | С                    | External interrupt input pin                |
|          | SCL2           |     |                      | I <sup>2</sup> C bus clock input/output pin |
|          | P24_6          |     |                      | General-purpose input/output port           |
| 19       | INT6           | I/O | С                    | External interrupt input pin                |
|          | SDA3           |     |                      | I <sup>2</sup> C bus data input/output pin  |
|          | P24_7          |     |                      | General-purpose input/output port           |
| 20       | INT7           | I/O | С                    | External interrupt input pin                |
|          | SCL3           |     |                      | I <sup>2</sup> C bus clock input/output pin |
|          | P22_0          |     |                      | General-purpose input/output port           |
| 21       | RX4            | I/O | Α                    | RX input pin of CAN4                        |
|          | INT12          |     |                      | External interrupt input pin                |
| 22       | P22_1          | I/O | А                    | General-purpose input/output port           |
| 22       | TX4            | 1/0 | A                    | TX output pin of CAN4                       |
|          | P22_2          |     |                      | General-purpose input/output port           |
| 23       | RX5            | I/O | Α                    | RX input pin of CAN5                        |
|          | INT13          |     |                      | External interrupt input pin                |
| 24       | P22_3          | I/O | А                    | General-purpose input/output port           |
| 24       | TX5            | 1/0 | A                    | TX output pin of CAN5                       |
|          | P20_0          |     |                      | General-purpose input/output port           |
| 25       | SIN2           | I/O | Α                    | Data input pin of LIN-USART2                |
|          | AIN0           |     |                      | Up/down counter input pin                   |
|          | P20_1          |     |                      | General-purpose input/output port           |
| 26       | SOT2           | I/O | А                    | Data output pin of LIN-USART2               |
|          | BIN0           |     |                      | Up/down counter input pin                   |

| Pin no.   | Pin name       | I/O | I/O circuit<br>type* | Function                             |
|-----------|----------------|-----|----------------------|--------------------------------------|
|           | P20_2          |     |                      | General-purpose input/output port    |
| 27        | SCK2           | I/O | А                    | Clock input/output pin of LIN-USART2 |
| 21        | CK2            | 1/0 |                      | Free-run timer input pin             |
|           | ZIN0           |     |                      | Up/down counter input pin            |
|           | P20_4          |     |                      | General-purpose input/output port    |
| 28        | SIN3           | I/O | Α                    | Data input pin of LIN-USART3         |
|           | AIN1           |     |                      | Up/down counter input pin            |
|           | P20_5          |     |                      | General-purpose input/output port    |
| 29        | SOT3           | I/O | Α                    | Data output pin of LIN-USART3        |
|           | BIN1           |     |                      | Up/down counter input pin            |
|           | P20_6          |     |                      | General-purpose input/output port    |
| 20        | SCK3           | 1/0 |                      | Clock input/output pin of LIN-USART3 |
| 30        | 30 CK3         | I/O | A                    | Free-run timer input pin             |
|           | ZIN1           |     |                      | Up/down counter input pin            |
|           | P15_0          |     |                      | General-purpose input/output port    |
| 31        | OCU0           | I/O | A                    | Output compare output pin            |
|           | ТОТ0           |     |                      | Reload timer output pin              |
|           | P15_1          |     |                      | General-purpose input/output port    |
| 32        | OCU1           | I/O | Α                    | Output compare output pin            |
| -         | TOT1           |     |                      | Reload timer output pin              |
| 34        | X0             | _   | J                    | Clock (oscillation) input            |
| 35        | X1             | _   | J                    | Clock (oscillation) output           |
| 36        | MD3            | I   | I                    | Mode setting pin                     |
| 37        | MD2            | I   | G                    | Mode setting pin                     |
| 38        | MD1            | I   | G                    | Mode setting pin                     |
| 39        | MD0            | I   | G                    | Mode setting pin                     |
| 40        | INITX          | I   | Н                    | External reset input                 |
|           | P15_2          |     |                      | General-purpose input/output port    |
| 41        | OCU2           | I/O | Α                    | Output compare output pin            |
| -         | TOT2           |     |                      | Reload timer output pin              |
|           | P15_3          |     |                      | General-purpose input/output port    |
| 42        | OCU3           | I/O | Α                    | Output compare output pin            |
|           | ТОТ3           |     |                      | Reload timer output pin              |
| 43 to 47, | P17_7 to P17_0 | I/O | ۸                    | General-purpose input/output ports   |
| 50 to 52  | PPG7 to PPG0   | 1/0 | A                    | PPG timer output pins                |


| Pin no. | Pin name | 1/0 | I/O circuit<br>type*     | Function                                   |
|---------|----------|-----|--------------------------|--------------------------------------------|
|         | P21_6    |     |                          | General-purpose input/output port          |
| 53      | SCK1     | I/O | Α                        | Clock input/output pin of LIN-USART1       |
|         | CK1      |     |                          | Free-run timer input pin                   |
| 54      | P21_5    | I/O | А                        | General-purpose input/output port          |
| 34      | SOT1     | 1/0 | A                        | Data output pin of LIN-USART1              |
| 55 -    | P21_4    | I/O | А                        | General-purpose input/output port          |
| 55      | SIN1     | 1/0 | A                        | Data input pin of LIN-USART1               |
|         | P21_2    |     |                          | General-purpose input/output port          |
| 56      | SCK0     | I/O | А                        | Clock input/output pin of LIN-USART0       |
| CK0     |          |     | Free-run timer input pin |                                            |
| 57      | P21_1    | I/O | А                        | General-purpose input/output port          |
| 57      | SOT0     | 1/0 | A                        | Data output pin of LIN-USART0              |
| F0      | P21_0    | I/O | ۸                        | General-purpose input/output port          |
| 58      | SIN0     | 1/0 | A                        | Data input pin of LIN-USART0               |
|         | P14_3    |     |                          | General-purpose input/output port          |
| 59      | ICU3     | I/O | А                        | Input capture input pin                    |
| 59      | TIN3     | 1/0 | A                        | External trigger input pin of reload timer |
|         | TTG3     |     |                          | PPG timer input pin                        |
|         | P14_2    |     |                          | General-purpose input/output port          |
| 60      | ICU2     | I/O | А                        | Input capture input pin                    |
| 60      | TIN2     | 1/0 | A                        | External trigger input pin of reload timer |
|         | TTG2     |     |                          | PPG timer input pin                        |
|         | P14_1    |     |                          | General-purpose input/output port          |
| 61      | ICU1     | I/O | ٨                        | Input capture input pin                    |
| 61      | TIN1     | 1/0 | A                        | External trigger input pin of reload timer |
|         | TTG1     |     |                          | PPG timer input pin                        |
|         | P14_0    |     |                          | General-purpose input/output port          |
| 62      | ICU0     | I/O | ^                        | Input capture input pin                    |
| 02      | TIN0     | 1/0 | А                        | External trigger input pin of reload timer |
|         | TTG0     |     |                          | PPG timer input pin                        |


<sup>\* :</sup> For I/O circuit type, refer to "■ I/O CIRCUIT TYPE".

### [Power supply/GND pins]

| Pin no.    | Pin name | I/O | Function                                        |
|------------|----------|-----|-------------------------------------------------|
| 17, 33, 49 | VSS      | _   | GND pins                                        |
| 16, 48     | VCC      |     | 3.3 V/5 V power supply pins                     |
| 64         | AVSS     |     | Analog GND pin for A/D converter                |
| 1          | AVCC     |     | 3.3 V/5 V power supply pin for A/D converter    |
| 63         | AVRH     |     | Reference power supply pin for A/D converter    |
| 18         | С        | _   | Capacitor connection pin for internal regulator |

#### **■ I/O CIRCUIT TYPE**





| Туре | Circuit                       | Remarks                                                                                                                       |
|------|-------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| G    | R CMOS level input            | MASK ROM and evaluation device:     CMOS level input     Flash device:     CMOS level input     12 V resistant (for MD [2:0]) |
| Н    | ₹ Pull-up resistor            | <ul> <li>CMOS hysteresis input</li> <li>Pull-up resistor value : approx.50 kΩ</li> </ul>                                      |
|      | R CMOS<br>Hysteresis<br>input |                                                                                                                               |
| I    | R CMOS Hysteresis input       | <ul> <li>CMOS hysteresis input</li> <li>Pull-down resistor value : approx.50 kΩ</li> </ul>                                    |
| J    | X1 Xout                       | Oscillation circuit                                                                                                           |
|      | X0 Standby control signal     |                                                                                                                               |

#### ■ PRECAUTIONS FOR HANDLING THE DEVICES

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your FUJITSU semiconductor devices.

#### 1. Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

#### · Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

#### • Recommended Operating Conditions

The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

#### · Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

#### (1) Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such over voltage or over-current conditions at the design stage.

#### (2) Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

#### (3) Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

#### • Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

Note: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- (a) Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- (b) Be sure that abnormal current flows do not occur during the power-on sequence.

#### • Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

#### · Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

#### Precautions Related to Usage of Devices

FUJITSU semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, submarine repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with FUJITSU sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

#### 2. Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mounting type. In either case, quality assurance of heat resistance are applied for mounting under the Fujitsu's recommended conditions only at the soldering stage. For detailed information on mount conditions, contact the sales representative.

#### · Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder.

In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to FUJITSU recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

#### Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges. You must use appropriate mounting techniques. FUJITSU recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with FUJITSU ranking of recommended conditions.

#### Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- (a) Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- (b) Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between +5 °C to +30 °C.
- (c) When necessary, FUJITSU packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- (d) Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

#### Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the FUJITSU recommended conditions for baking.

#### · Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- (a) Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- (b) Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- (c) Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1  $M\Omega$ ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- (d) Ground all fixtures and instruments, or protect with anti-static measures.
- (e) Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

#### 3. Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above. For reliable performance, do the following:

- (1) Humidity
  - Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.
- (2) Discharge of Static Electricity

  When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation.

  In such cases, use anti-static measures or processing to prevent discharges.
- (3) Corrosive Gases, Dust, or Oil

  Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.
- (4) Radiation, Including Cosmic Radiation

  Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.
- (5) Smoke, Flame

Note: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of FUJITSU products in other special environmental conditions should consult with FUJITSU sales representatives.

#### **■ HANDLING DEVICES**

#### Power supply pins

Because there are multiple VCC and VSS pins, respective pins at the same potential are interconnected to prevent malfunctions such as latch-up. However, you must connect the pins externally to the power supply and ground lines to reduce the electro-magnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Furthermore, the current supply source should be connected to the VCC and VSS pins of the device at a low impedance.

It is recommended to connect a ceramic bypass capacitor of approximately 0.1  $\mu$ F as a bypass capacitor between the Vcc and Vss near this device.

#### · Crystal oscillator circuit

Noise in proximity to the X0 and X1 pins can cause the device to malfunction. Printed circuit boards should be designed so that the X0 and X1 pins, crystal oscillator (or ceramic oscillator), and bypass capacitors connected to ground are located near the device and ground.

It is recommended that the printed circuit board artwork be designed such that the X0 and X1 pins are surrounded by ground plane for the stable operation.

Please request the oscillator manufacturer to evaluate the oscillational characteristics of the crystal and this device.

#### Mode pins (MD0 to MD3)

Connect them directly to VCC or VSS. To prevent the device from entering test mode accidentally due to noise, minimize the lengths of the patterns between each mode pin and VCC or VSS on the printed circuit board as much as possible and connect them at a low impedance. When used pulling down, design your circuit not to generate noises with a resistance 1  $k\Omega$  or less. Test your circuit and confirm that there is no problem.

#### Operation at power-on

At power-on, it is necessary to make the terminal INITX "L" level.

Maintain the "L" level input to the INITX pin for the duration of the stabilization wait time immediately after the power on to ensure the stabilization wait time as required by the oscillator circuit.

#### Note on oscillator input at power-on

At power-on, ensure that the clock is input until the oscillator stabilization wait time has elapsed.

#### · Built-in regulator

As this series includes built-in step-down regulators, always connect a bypass capacitor of 4.7  $\mu$ F or more to the C pin for use by the regulator.

#### Notes on power on/off

Connect/disconnect the power supply pins when power on/off, or turn on/off in the following order.

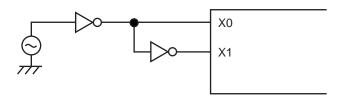
Power on : VCC  $\rightarrow$  AVCC, AVRH Power off : AVCC, AVRH  $\rightarrow$  VCC

#### Precautions for the STOP mode

Set 1 to the bit 0 (OSCD1) of STCR register. When shifting to the STOP mode, a regulator switches to the standby regulator (for low-consumption current).

Due to the limited drive current, stop the (programming/erasing) access to the A/D converter and Flash before shifting to the STOP mode.

#### Serial communication


There is a possibility to receive wrong data due to the noise or other causes on the serial communication. Therefore, design a board so as to avoid noise.

Consider receiving of wrong data when designing the system. For example, apply a checksum to detect an error. If an error is detected, retransmit the data.

#### Notes on using external clock

When using the external clock, as a general rule you should simultaneously supply X0 and X1 pins. And also, the clock signal to X0 should be supplied a clock signal with the reverse phase to X1 pins. However, in this case the stop mode (oscillation stop mode) must not be used.

Example of using external clock (normal)



Note: Stop mode (oscillation stop mode) cannot be used.

#### • Notes on operating in PLL clock mode

If the oscillator is disconnected or the clock input stops when the PLL clock is selected, the microcontroller may continue to operate at the free-running frequency of the self-oscillating circuit of the PLL. However, this self-running operation cannot be guaranteed.

#### **■ NOTES ON DEBUGGER**

#### Execution of the RETI Command

If single-step execution is used in an environment where an interrupt occurs frequently, the corresponding interrupt handling routine will be executed repeatedly to the exclusion of other processing. This will prevent the main routine and the handlers for low priority level interrupts from being executed (For example, if the time-base timer interrupt is enabled, stepping over the RETI instruction will always break on the first line of the time-base timer interrupt handler).

Disable the corresponding interrupts when the corresponding interrupt handling routine no longer needs debugging.

#### Break function

If the range of addresses that cause a hardware break (including event breaks) is set to the address of the current system stack pointer or to an area that contains the stack pointer, execution will break after each instruction regardless of whether the user program actually contains data access instructions.

To prevent this, do not set (word) access to the area containing the address of the system stack pointer as the target of the hardware break (including an event breaks).

#### Operand break

It may cause malfunctions if a stack pointer exists in the area which is set as the DSU operand break. Do not set the access to the areas containing the address of system stack pointer as a target of data event break.

#### • Notes on PS register

As the PS register is processed in advance by some instructions, when the debugger is being used, the following exception handling may result in execution breaking in an interrupt handling routine or the displayed values of the flags in the PS register being updated.

As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, the operation before and after the EIT always proceeds according to specification.

- 1) The following behavior may occur if any of the following occurs in the instruction immediately after a DIV0U/DIV0S instruction:
  - (a) a user interrupt or NMI is accepted; (b) single-step execution is performed; or (c) execution breaks due to a data event or from the emulator menu.
  - -D0 and D1 flags are updated in advance.
  - -An EIT handling routine (user interrupt/NMI or emulator) is executed.
  - -Upon returning from the EIT, the DIV0U/DIV0S instruction is executed and the D0 and D1 flags are updated to the same values as those in 1).
- 2) The following behavior occurs when an ORCCR, STILM, MOV Ri or PS instruction is executed to enable a user interrupt or NMI source while that interrupt is in the active state.
  - -The PS register is updated in advance.
  - -An EIT handling routine (user interrupt/NMI or emulator) is executed.
  - -Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in 1).

#### **■ BLOCK DIAGRAM**



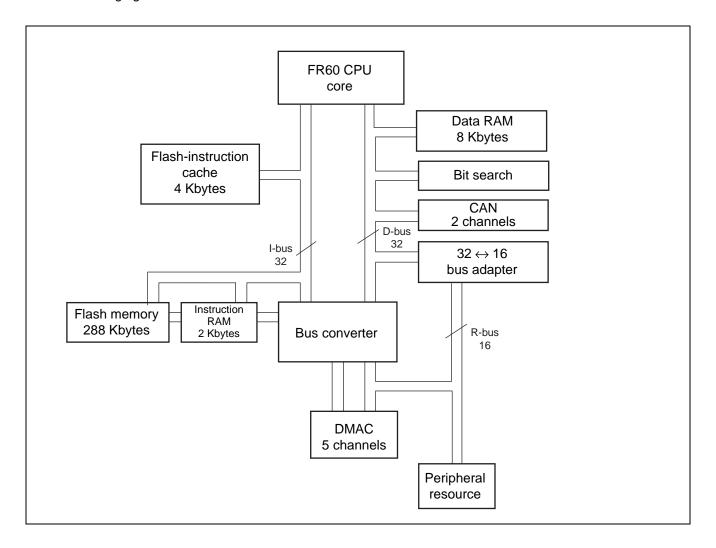
#### **■ CPU AND CONTROL UNIT**

#### Internal architecture

The FR family CPU is a high performance core that is designed based on the RISC architecture with advanced instructions for embedded applications.

#### 1. Features

- Adoption of RISC architecture
   Basic instruction: 1 instruction per cycle
- General-purpose registers: 32-bit x 16 registers
- 4 Gbytes linear memory space
- Multiplier installed
  - 32-bit × 32-bit multiplication: 5 cycles 16-bit × 16-bit multiplication: 3 cycles
- Enhanced interrupt processing function Quick response speed (6 cycles)
   Multiple-interrupt support Level mask function (16 levels)
- Enhanced instructions for I/O operation Memory-to-memory transfer instruction Bit processing instruction
- Basic instruction word length: 16 bits
- Low-power consumption SLEEP mode/STOP mode

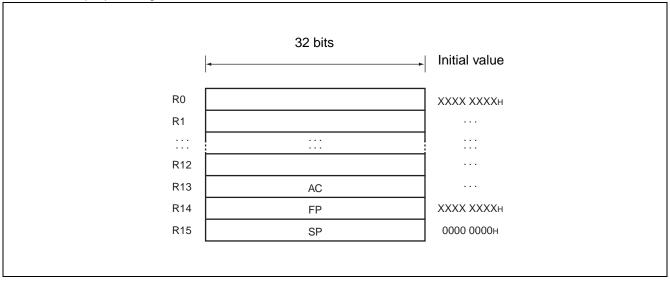

#### 2. Internal architecture

The FR family CPU uses the Harvard architecture in which the instruction bus and data bus are independent of each other.

A 32-bit  $\leftrightarrow$  16-bit bus adapter is connected to the 32-bit bus (D-bus) to provide an interface between the CPU and peripheral resources.

A Harvard  $\leftrightarrow$  Princeton bus converter is connected to both the I-bus and D-bus to provide an interface between the CPU and the bus controller.

The following figure shows the internal architecture structure.




# 3. Programming model• Basic programming model

|                             |     | 32 bits           |               |
|-----------------------------|-----|-------------------|---------------|
|                             |     | <b> </b> →        | Initial value |
| (                           | R0  |                   | XXXX XXXXH    |
|                             | R1  |                   |               |
|                             | ::: | :::               | :::           |
| General-purpose registers < | R12 |                   |               |
|                             | R13 | AC                |               |
|                             | R14 | FP                | XXXX XXXXH    |
|                             | R15 | SP                | 0000 0000н    |
| Program status              |     |                   |               |
| Program counter             | PC  |                   |               |
|                             | RS  | ILM     SCR   CCR |               |
| Table base register         | TBR |                   |               |
| Return pointer              | RP  |                   |               |
| System stack pointer        | SSP |                   |               |
| User stack pointer          | USP |                   |               |
| Multiply and divide result  | MDH |                   |               |
| registers                   | MDL |                   |               |

#### 4. Registers

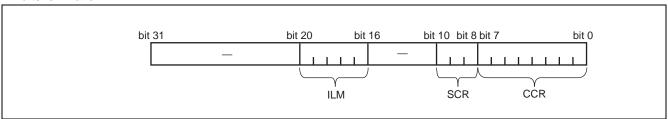
General-purpose register



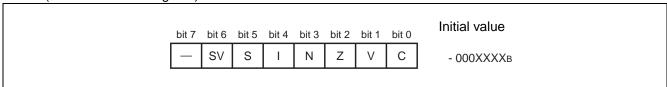
Registers R0 to R15 are general-purpose registers. These registers can be used as accumulators for computation operations and as pointers for memory access.

Enhanced commands are provided for some of the 16 registers to enable their use for particular applications.

R13: Virtual accumulator


R14 : Frame pointer R15 : Stack pointer

Initial values at reset are undefined for R0 to R14. The value for R15 is 00000000H (SSP value).

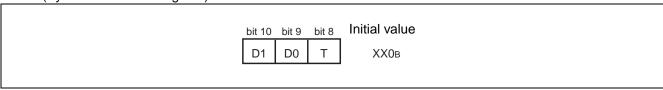

#### • PS (Program Status)

This register holds the program status, and is divided into three parts, ILM, SCR, and CCR.

All undefined bits (-) in the diagram are reserved bits. The values are always read "0". Write access to these bits is invalid.



#### • CCR (Condition Code Register)




SV : Supervisor S : Stack flag

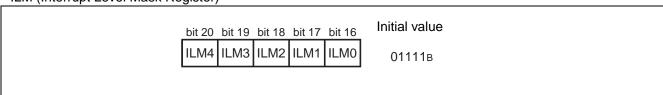
I : Interrupt enable flagN : Negative enable flag

Z : Zero flagV : Overflow flagC : Carry flag

| <ul> <li>SCR (System Condition Registe</li> </ul> | • SCR | (System | Condition | Register |
|---------------------------------------------------|-------|---------|-----------|----------|
|---------------------------------------------------|-------|---------|-----------|----------|



Flag for step multiplication (D1, D0)


This flag stores interim data during execution of step multiplication.

Step trace trap flag (T)

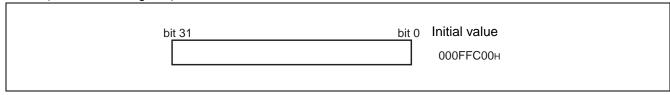
This flag indicates whether the step trace trap is enabled or disabled.

The step trace trap function is used by emulators. When an emulator is in use, it cannot be used in execution of user programs.

#### • ILM (Interrupt Level Mask Register)



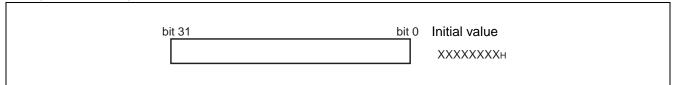
This register stores interrupt level mask values, and the values stored in ILM4 to ILM0 are used for level masking. The register is initialized to value "01111<sub>B</sub>" at reset.


• PC (Program Counter)



The program counter indicates the address of the instruction that is being executed.

The initial value at reset is undefined.


• TBR (Table Base Register)

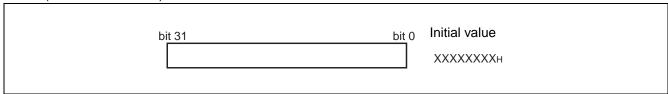


The table base register stores the starting address of the vector table used in EIT processing.

The initial value at reset is 000FFC00<sub>H</sub>.

| • RP | (Return | Pointer) |
|------|---------|----------|
|------|---------|----------|




The return pointer stores the address to return from subroutines.

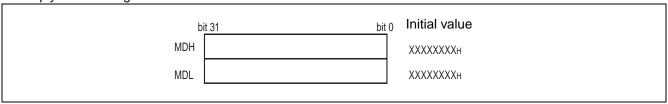
During execution of a CALL instruction, the PC value is transferred to this RP register.

During execution of a RET instruction, the contents of the RP register are transferred to PC.

The initial value at reset is undefined.

#### • USP (User Stack Pointer)




When the S flag is "1", the user stack pointer functions as the R15 register.

• The USP register can also be explicitly specified.

The initial value at reset is undefined.

• This register cannot be used with RETI instructions.

• Multiply & divide registers



These registers are for multiplication and division, and are each 32 bits in length.

The initial value at reset is undefined.

#### **■ MODE SETTING**

In the FR family, the mode pins (MD2, MD1, MD0) and the mode register (MODR) are used to set the operating mode.

#### 1. Mode pins

The three pins MD2, MD1, MD0 are used to specify the mode vector fetch.

Settings other than shown in the table are prohibited.

| M   | Mode pins* |     | Mode name                | Reset vector | Remarks     |  |
|-----|------------|-----|--------------------------|--------------|-------------|--|
| MD2 | MD1        | MD0 | Wiode Haine              | access area  | Remarks     |  |
| 0   | 0          | 0   | Internal ROM mode vector | Internal     |             |  |
| 0   | 0          | 1   | External ROM mode vector | External     | Not allowed |  |

<sup>\*:</sup> Always use MD3 with "0".

#### 2. Mode register (MODR)

The data written to the mode register using mode vector fetch is called mode data.

After the mode register (MODR) is set, the device operates according to the operation mode set in this register.

The mode register is set by all reset sources. User programs cannot write data to the mode register.

Rewriting is allowed in the emulator mode. In this case, use an 8-bit length data transfer instruction.

Data cannot be written by the transfer instruction of the 16/32-bit length.

Be sure to set these bits to "00000111<sub>B</sub>".

Operation is not guaranteed when any value other than "00000111<sub>B</sub>" is set.

Note: The mode data needs to be allocated in 000FFFF8<sub>H</sub> as byte data. The mode data (00000111<sub>B</sub>) must be allocated in bit 31 to bit 24, as the FR family uses the big endian architecture.

#### ■ RECOMMENDED SETTING

#### 1. Setting of PLL and clock gear

Recommended setting of PLL division and clock gear

| Clock input | PLL multiplied setting |      | Clock gear setting |      | PLL (vco) output (X) | Base clock |
|-------------|------------------------|------|--------------------|------|----------------------|------------|
| [MHz]       | DIVM                   | DIVN | DIVG               | MULG | [MHz]                | [MHz]      |
| 4           | 2                      | 20   | 16                 | 20   | 160                  | 80         |
| 4           | 2                      | 19   | 16                 | 20   | 152                  | 76         |
| 4           | 2                      | 18   | 16                 | 20   | 144                  | 72         |
| 4           | 2                      | 17   | 16                 | 16   | 136                  | 68         |
| 4           | 2                      | 16   | 16                 | 16   | 128                  | 64         |
| 4           | 2                      | 15   | 16                 | 16   | 120                  | 60         |
| 4           | 2                      | 14   | 16                 | 16   | 112                  | 56         |
| 4           | 2                      | 13   | 16                 | 12   | 104                  | 52         |
| 4           | 2                      | 12   | 16                 | 12   | 96                   | 48         |
| 4           | 2                      | 11   | 16                 | 12   | 88                   | 44         |
| 4           | 4                      | 10   | 16                 | 24   | 160                  | 40         |
| 4           | 4                      | 9    | 16                 | 24   | 144                  | 36         |
| 4           | 4                      | 8    | 16                 | 24   | 128                  | 32         |
| 4           | 4                      | 7    | 16                 | 24   | 112                  | 28         |
| 4           | 6                      | 6    | 16                 | 24   | 144                  | 24         |
| 4           | 8                      | 5    | 16                 | 28   | 160                  | 20         |
| 4           | 10                     | 4    | 16                 | 32   | 160                  | 16         |
| 4           | 12                     | 3    | 16                 | 32   | 144                  | 12         |

#### 2. Setting of Flash memory controller

· Setting of flash access timing

For executing programs with a Flash memory, follow the settings below according to the frequency of CPU clock (CLKB). This setting is the most suitable for a high-speed access to the Flash memory.

#### At Flash memory read operating

| CPU clock (CLKB) | ATD | ALEH | EQ | WEXH | WTC |
|------------------|-----|------|----|------|-----|
| To 24 MHz        | 0   | 0    | 0  | 0    | 1   |
| To 48 MHz        | 0   | 0    | 1  | 0    | 2   |
| To 80 MHz        | 1   | 1    | 3  | 0    | 4   |

#### At Flash memory write operating

| CPU clock (CLKB) | ATD | ALEH | EQ | WEXH | WTC |
|------------------|-----|------|----|------|-----|
| To 32 MHz        | 1   | 0    | 1  | 0    | 4   |
| To 48 MHz        | 1   | 0    | 3  | 0    | 5   |
| To 64 MHz        | 1   | 1    | 3  | 0    | 6   |
| To 80 MHz        | 1   | 1    | 3  | 0    | 7   |

#### 3. Setting of clock modulator

The setting values in the table are defined within the rages of base clock frequency; 32 MHz to 80 MHz. The Flash memory access needs to be configured according to the Fmax.

PLL and clock gear need to be configured according to the base clock.

Setting of clock modulator

| Modulation<br>(k) | Internal parameter (N) | CMPR<br>[hex] | Base clock<br>[MHz] | Fmin<br>[MHz] | Fmax<br>[MHz] |
|-------------------|------------------------|---------------|---------------------|---------------|---------------|
| 1                 | 3                      | 026F          | 80                  | 72.6          | 89.1          |
| 1                 | 3                      | 026F          | 76                  | 69.1          | 84.5          |
| 1                 | 5                      | 02AE          | 76                  | 65.3          | 90.8          |
| 2                 | 3                      | 046E          | 76                  | 65.3          | 90.8          |
| 1                 | 3                      | 026F          | 72                  | 65.5          | 79.9          |
| 1                 | 5                      | 02AE          | 72                  | 62            | 85.8          |
| 1                 | 7                      | 02ED          | 72                  | 58.8          | 92.7          |
| 2                 | 3                      | 046E          | 72                  | 62            | 85.8          |
| 1                 | 3                      | 026F          | 68                  | 62            | 75.3          |
| 1                 | 5                      | 02AE          | 68                  | 58.7          | 80.9          |
| 1                 | 7                      | 02ED          | 68                  | 55.7          | 87.3          |
| 1                 | 9                      | 032C          | 68                  | 53            | 95            |
| 2                 | 3                      | 046E          | 68                  | 58.7          | 80.9          |
| 2                 | 5                      | 04AC          | 68                  | 53            | 95            |
| 3                 | 3                      | 066D          | 68                  | 55.7          | 87.3          |
| 4                 | 3                      | 086C          | 68                  | 53            | 95            |
| 1                 | 3                      | 026F          | 64                  | 58.5          | 70.7          |
| 1                 | 5                      | 02AE          | 64                  | 55.3          | 75.9          |
| 1                 | 7                      | 02ED          | 64                  | 52.5          | 82            |
| 1                 | 9                      | 032C          | 64                  | 49.9          | 89.1          |
| 2                 | 3                      | 046E          | 64                  | 55.3          | 75.9          |
| 2                 | 5                      | 04AC          | 64                  | 49.9          | 89.1          |
| 3                 | 3                      | 066D          | 64                  | 52.5          | 82            |
| 4                 | 3                      | 086C          | 64                  | 49.9          | 89.1          |
| 1                 | 3                      | 026F          | 60                  | 54.9          | 66.1          |
| 1                 | 5                      | 02AE          | 60                  | 51.9          | 71            |
| 1                 | 7                      | 02ED          | 60                  | 49.3          | 76.7          |
| 1                 | 9                      | 032C          | 60                  | 46.9          | 83.3          |
| 2                 | 3                      | 046E          | 60                  | 51.9          | 71            |
| 2                 | 5                      | 04AC          | 60                  | 46.9          | 83.3          |
| 3                 | 3                      | 066D          | 60                  | 49.3          | 76.7          |

| Modulation<br>(k) | Internal parameter (N) | CMPR<br>[hex] | Base clock<br>[MHz] | Fmin<br>[MHz] | Fmax<br>[MHz] |
|-------------------|------------------------|---------------|---------------------|---------------|---------------|
| 4                 | 3                      | 086C          | 60                  | 46.9          | 83.3          |
| 5                 | 3                      | 0A6B          | 60                  | 44.7          | 91.3          |
| 1                 | 3                      | 026F          | 56                  | 51.4          | 61.6          |
| 1                 | 5                      | 02AE          | 56                  | 48.6          | 66.1          |
| 1                 | 7                      | 02ED          | 56                  | 46.1          | 71.4          |
| 1                 | 9                      | 032C          | 56                  | 43.8          | 77.6          |
| 1                 | 11                     | 036B          | 56                  | 41.8          | 84.9          |
| 1                 | 13                     | 03AA          | 56                  | 39.9          | 93.8          |
| 2                 | 3                      | 046E          | 56                  | 48.6          | 66.1          |
| 2                 | 5                      | 04AC          | 56                  | 43.8          | 77.6          |
| 2                 | 7                      | 04EA          | 56                  | 39.9          | 93.8          |
| 3                 | 3                      | 066D          | 56                  | 46.1          | 71.4          |
| 4                 | 3                      | 086C          | 56                  | 43.8          | 77.6          |
| 5                 | 3                      | 0A6B          | 56                  | 41.8          | 84.9          |
| 1                 | 3                      | 026F          | 52                  | 47.8          | 57            |
| 1                 | 5                      | 02AE          | 52                  | 45.2          | 61.2          |
| 1                 | 7                      | 02ED          | 52                  | 42.9          | 66.1          |
| 1                 | 9                      | 032C          | 52                  | 40.8          | 71.8          |
| 1                 | 11                     | 036B          | 52                  | 38.8          | 78.6          |
| 1                 | 13                     | 03AA          | 52                  | 37.1          | 86.8          |
| 2                 | 3                      | 046E          | 52                  | 45.2          | 61.2          |
| 2                 | 5                      | 04AC          | 52                  | 40.8          | 71.8          |
| 2                 | 7                      | 04EA          | 52                  | 37.1          | 86.8          |
| 3                 | 3                      | 066D          | 52                  | 42.9          | 66.1          |
| 3                 | 5                      | 06AA          | 52                  | 37.1          | 86.8          |
| 4                 | 3                      | 086C          | 52                  | 40.8          | 71.8          |
| 5                 | 3                      | 0A6B          | 52                  | 38.8          | 78.6          |
| 6                 | 3                      | 0C6A          | 52                  | 37.1          | 86.8          |
| 1                 | 3                      | 026F          | 48                  | 44.2          | 52.5          |
| 1                 | 5                      | 02AE          | 48                  | 41.8          | 56.4          |
| 1                 | 7                      | 02ED          | 48                  | 39.6          | 60.9          |
| 1                 | 9                      | 032C          | 48                  | 37.7          | 66.1          |
| 1                 | 11                     | 036B          | 48                  | 35.9          | 72.3          |
| 1                 | 13                     | 03AA          | 48                  | 34.3          | 79.9          |
| 1                 | 15                     | 03E9          | 48                  | 32.8          | 89.1          |



| Modulation<br>(k) | Internal parameter (N) | CMPR<br>[hex] | Base clock<br>[MHz] | Fmin<br>[MHz] | Fmax<br>[MHz] |
|-------------------|------------------------|---------------|---------------------|---------------|---------------|
| 2                 | 3                      | 046E          | 48                  | 41.8          | 56.4          |
| 2                 | 5                      | 04AC          | 48                  | 37.7          | 66.1          |
| 2                 | 7                      | 04EA          | 48                  | 34.3          | 79.9          |
| 3                 | 3                      | 066D          | 48                  | 39.6          | 60.9          |
| 3                 | 5                      | 06AA          | 48                  | 34.3          | 79.9          |
| 4                 | 3                      | 086C          | 48                  | 37.7          | 66.1          |
| 5                 | 3                      | 0A6B          | 48                  | 35.9          | 72.3          |
| 6                 | 3                      | 0C6A          | 48                  | 34.3          | 79.9          |
| 7                 | 3                      | 0E69          | 48                  | 32.8          | 89.1          |
| 1                 | 3                      | 026F          | 44                  | 40.6          | 48.1          |
| 1                 | 5                      | 02AE          | 44                  | 38.4          | 51.6          |
| 1                 | 7                      | 02ED          | 44                  | 36.4          | 55.7          |
| 1                 | 9                      | 032C          | 44                  | 34.6          | 60.4          |
| 1                 | 11                     | 036B          | 44                  | 33            | 66.1          |
| 1                 | 13                     | 03AA          | 44                  | 31.5          | 73            |
| 1                 | 15                     | 03E9          | 44                  | 30.1          | 81.4          |
| 2                 | 3                      | 046E          | 44                  | 38.4          | 51.6          |
| 2                 | 5                      | 04AC          | 44                  | 34.6          | 60.4          |
| 2                 | 7                      | 04EA          | 44                  | 31.5          | 73            |
| 3                 | 3                      | 066D          | 44                  | 36.4          | 55.7          |
| 3                 | 5                      | 06AA          | 44                  | 31.5          | 73            |
| 4                 | 3                      | 086C          | 44                  | 34.6          | 60.4          |
| 4                 | 5                      | 08A8          | 44                  | 28.9          | 92.1          |
| 5                 | 3                      | 0A6B          | 44                  | 33            | 66.1          |
| 6                 | 3                      | 0C6A          | 44                  | 31.5          | 73            |
| 7                 | 3                      | 0E69          | 44                  | 30.1          | 81.4          |
| 1                 | 3                      | 026F          | 40                  | 37            | 43.6          |
| 1                 | 5                      | 02AE          | 40                  | 34.9          | 46.8          |
| 1                 | 7                      | 02ED          | 40                  | 33.1          | 50.5          |
| 1                 | 9                      | 032C          | 40                  | 31.5          | 54.8          |
| 1                 | 11                     | 036B          | 40                  | 30            | 59.9          |
| 1                 | 13                     | 03AA          | 40                  | 28.7          | 66.1          |
| 1                 | 15                     | 03E9          | 40                  | 27.4          | 73.7          |
| 2                 | 3                      | 046E          | 40                  | 34.9          | 46.8          |
| 2                 | 5                      | 04AC          | 40                  | 31.5          | 54.8          |

(Continued)

DS07-16607-4E



| Modulation<br>(k) | Internal parameter (N) | CMPR<br>[hex] | Base clock<br>[MHz] | Fmin<br>[MHz] | Fmax<br>[MHz] |
|-------------------|------------------------|---------------|---------------------|---------------|---------------|
| 2                 | 7                      | 04EA          | 40                  | 28.7          | 66.1          |
| 2                 | 9                      | 0528          | 40                  | 26.3          | 83.3          |
| 3                 | 3                      | 066D          | 40                  | 33.1          | 50.5          |
| 3                 | 5                      | 06AA          | 40                  | 28.7          | 66.1          |
| 3                 | 7                      | 06E7          | 40                  | 25.3          | 95.8          |
| 4                 | 3                      | 086C          | 40                  | 31.5          | 54.8          |
| 4                 | 5                      | 08A8          | 40                  | 26.3          | 83.3          |
| 5                 | 3                      | 0A6B          | 40                  | 30            | 59.9          |
| 6                 | 3                      | 0C6A          | 40                  | 28.7          | 66.1          |
| 7                 | 3                      | 0E69          | 40                  | 27.4          | 73.7          |
| 8                 | 3                      | 1068          | 40                  | 26.3          | 83.3          |
| 1                 | 3                      | 026F          | 36                  | 33.3          | 39.2          |
| 1                 | 5                      | 02AE          | 36                  | 31.5          | 42            |
| 1                 | 7                      | 02ED          | 36                  | 29.9          | 45.3          |
| 1                 | 9                      | 032C          | 36                  | 28.4          | 49.2          |
| 1                 | 11                     | 036B          | 36                  | 27.1          | 53.8          |
| 1                 | 13                     | 03AA          | 36                  | 25.8          | 59.3          |
| 1                 | 15                     | 03E9          | 36                  | 24.7          | 66.1          |
| 2                 | 3                      | 046E          | 36                  | 31.5          | 42            |
| 2                 | 5                      | 04AC          | 36                  | 28.4          | 49.2          |
| 2                 | 7                      | 04EA          | 36                  | 25.8          | 59.3          |
| 2                 | 9                      | 0528          | 36                  | 23.7          | 74.7          |
| 3                 | 3                      | 066D          | 36                  | 29.9          | 45.3          |
| 3                 | 5                      | 06AA          | 36                  | 25.8          | 59.3          |
| 3                 | 7                      | 06E7          | 36                  | 22.8          | 85.8          |
| 4                 | 3                      | 086C          | 36                  | 28.4          | 49.2          |
| 4                 | 5                      | 08A8          | 36                  | 23.7          | 74.7          |
| 5                 | 3                      | 0A6B          | 36                  | 27.1          | 53.8          |
| 6                 | 3                      | 0C6A          | 36                  | 25.8          | 59.3          |
| 7                 | 3                      | 0E69          | 36                  | 24.7          | 66.1          |
| 8                 | 3                      | 1068          | 36                  | 23.7          | 74.7          |
| 9                 | 3                      | 1267          | 36                  | 22.8          | 85.8          |
| 1                 | 3                      | 026F          | 32                  | 29.7          | 34.7          |
| 1                 | 5                      | 02AE          | 32                  | 28            | 37.3          |
| 1                 | 7                      | 02ED          | 32                  | 26.6          | 40.2          |



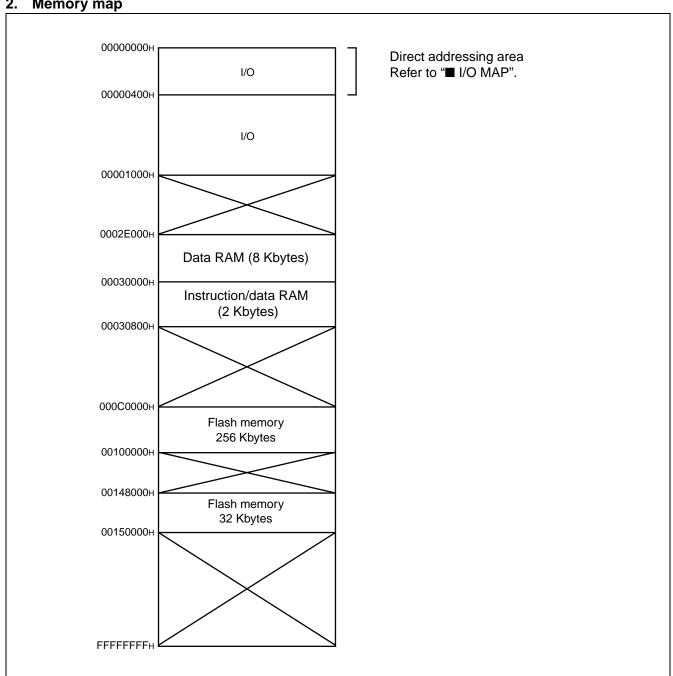
| Modulation (k) | Internal parameter (N) | CMPR<br>[hex] | Base clock<br>[MHz] | Fmin<br>[MHz] | Fmax<br>[MHz] |
|----------------|------------------------|---------------|---------------------|---------------|---------------|
| 1              | 9                      | 032C          | 32                  | 25.3          | 43.6          |
| 1              | 11                     | 036B          | 32                  | 24.1          | 47.7          |
| 1              | 13                     | 03AA          | 32                  | 23            | 52.5          |
| 1              | 15                     | 03E9          | 32                  | 22            | 58.6          |
| 2              | 3                      | 046E          | 32                  | 28            | 37.3          |
| 2              | 5                      | 04AC          | 32                  | 25.3          | 43.6          |
| 2              | 7                      | 04EA          | 32                  | 23            | 52.5          |
| 2              | 9                      | 0528          | 32                  | 21.1          | 66.1          |
| 2              | 11                     | 0566          | 32                  | 19.5          | 89.1          |
| 3              | 3                      | 066D          | 32                  | 26.6          | 40.2          |
| 3              | 5                      | 06AA          | 32                  | 23            | 52.5          |
| 3              | 7                      | 06E7          | 32                  | 20.3          | 75.9          |
| 4              | 3                      | 086C          | 32                  | 25.3          | 43.6          |
| 4              | 5                      | 08A8          | 32                  | 21.1          | 66.1          |
| 5              | 3                      | 0A6B          | 32                  | 24.1          | 47.7          |
| 5              | 5                      | 0AA6          | 32                  | 19.5          | 89.1          |
| 6              | 3                      | 0C6A          | 32                  | 23            | 52.5          |
| 7              | 3                      | 0E69          | 32                  | 22            | 58.6          |
| 8              | 3                      | 1068          | 32                  | 21.1          | 66.1          |
| 9              | 3                      | 1267          | 32                  | 20.3          | 75.9          |
| 10             | 3                      | 1466          | 32                  | 19.5          | 89.1          |

#### **■ MEMORY SPACE**

#### 1. Memory space

The FR family has 4 Gbytes of logical address space (2<sup>32</sup> addresses) available to the CPU by linear access.

• Direct addressing area


The following address space area is used for I/O.

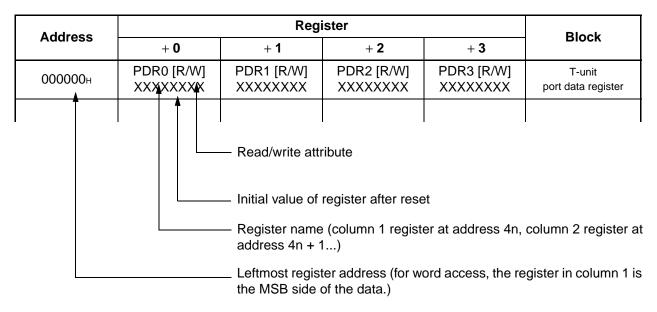
This area is called direct addressing area, and the address of an operand can be specified directly in an instruction.

The size of directly addressable area depends on the length of the data to be accessed as shown below.

Byte data access : 000H to 0FFH Half word access : 000H to 1FFH Word data access : 000H to 3FFH

#### **Memory map**




#### 3. Flash memory sector configuration

|                          | MDOAFACONO                  |
|--------------------------|-----------------------------|
| addr                     | MB91F463NC                  |
| оот<br>0014:FFFFн        |                             |
| 0014:Е000н               | SA7(8 Kbytes)               |
| 0014:DFFFн               | 0.4.0(0.1(h.:.t)            |
| 0014:С000н               | SA6(8 Kbytes)               |
| 0014:BFFFн               | CAE(9 Khytoo)               |
| 0014:А000н               | SA5(8 Kbytes)               |
| 0014:9FFFн               | SA4(8 Kbytes)               |
| 0014:8000н               | e/(T(GT(B)(GG)              |
| 0014:7FFFн               | SA3(8 Kbytes)               |
| 0014:6000н<br>0014:5FFFн | ` , ,                       |
| 0014:35556               | SA2(8 Kbytes)               |
| 0014:3FFFн               |                             |
| 0014:2000н               | SA1(8 Kbytes)               |
| 0014:1FFFн               | 0.10(0.14)                  |
| 0014:0000н               | SA0(8 Kbytes)               |
| 0013:FFFFн               | CA22(64 Khytaa)             |
| 0013:0000н               | SA23(64 Kbytes)             |
| 0012:FFFFн               | SA22(64 Kbytes)             |
| 0012:0000н               | 6/122(04 Noytes)            |
| 0011:FFFFн               | SA21(64 Kbytes)             |
| 0011:0000н<br>0010:FFFFн |                             |
| 0010:РЕРЕН               | SA20(64 Kbytes)             |
| 0010.0000н<br>000F:FFFFн |                             |
| 000F:0000н               | SA19(64 Kbytes)             |
| 000E:FFFFн               | 0.4.0/0.4.1/1 / )           |
| 000Е:0000н               | SA18(64 Kbytes)             |
| 000D:FFFFн               | SA17(64 Kbytes)             |
| 000D:0000н               | OATT (04 Rbytes)            |
| 000С:FFFFн               | SA16(64 Kbytes)             |
| 000С:0000н               | (0.11.0)100)                |
| 000B:FFFFн<br>000B:0000н | SA15(64 Kbytes)             |
| 000Б.0000H<br>000А:FFFFн | , , ,                       |
| 000А:1111н               | SA14(64 Kbytes)             |
| 0009:FFFFн               | 0.1.0(0.1.1(1)              |
| 0009:0000н               | SA13(64 Kbytes)             |
| 0008:FFFFн               | SA12(64 Kbytes)             |
| 0008:0000н               | SA12(64 Rbyles)             |
| 0007:FFFFн               | SA11(64 Kbytes)             |
| 0007:0000н               | Critical Region)            |
| 0006:FFFFн               | SA10(64 Kbytes)             |
| 0006:0000н<br>0005:FFFFн |                             |
| 0005:ГЕГЕН               | SA9(64 Kbytes)              |
| 0003.0000н<br>0004:FFFFн |                             |
| 0004:11111н              | SA8(64 Kbytes)              |
| 223000                   | addr+0 addr+1 addr+2 addr+3 |
| 16-bit write mode        | dat[31:16] dat[15:0]        |
| 32-bit read mode         | dat[31:0]                   |
|                          | · · ·                       |

The shaded area is unusable.

Note: MB91F463NC has a different sector map for the flash memory to that of MB91F463NA. The sector map showed above is suited for MB91F463NC, not for MB91F463NA.

#### ■ I/O MAP



Note: Initial values of register bits are represented as follows:

- " 1 " : Initial value " 1 "
- " 0 " : Initial value " 0 "
- " X ": Initial value " undefined "
- " " : No physical register at this location

Access is prohibited to areas where the data access attributes are undefined.

| Address                  |                            | Reg                               | ister                            |                                  | Block                        |  |  |
|--------------------------|----------------------------|-----------------------------------|----------------------------------|----------------------------------|------------------------------|--|--|
| Address                  | +0                         | +1                                | +2                               | +2 +3                            |                              |  |  |
| 000000н<br>to<br>000008н |                            | Reserved                          |                                  |                                  |                              |  |  |
| 00000Сн                  | Rese                       | erved                             | PDR14 [R/W]<br>XXXX              | PDR15 [R/W]<br>XXXX              |                              |  |  |
| 000010н                  | Reserved                   | PDR17 [R/W]<br>XXXXXXXX           | Rese                             | erved                            | R-bus                        |  |  |
| 000014н                  | PDR20 [R/W]<br>-XXX-XXX    | PDR21 [R/W]<br>-XXX-XXX           | PDR22 [R/W]<br>XXXX              | Reserved                         | Port Data<br>Register        |  |  |
| 000018н                  | PDR24 [R/W]<br>XXXXXXXX    |                                   | Reserved                         |                                  |                              |  |  |
| 00001Сн                  | Reserved                   | PDR29 [R/W]<br>XXXXXXXX           | Rese                             | erved                            |                              |  |  |
| 000020н                  |                            | Rese                              | erved                            |                                  | ]                            |  |  |
| 000024н<br>to<br>00002Сн |                            | Rese                              | erved                            |                                  | Reserved                     |  |  |
| 00002Сн                  | EIRR0 [R/W]<br>00000000    | ENIR0 [R/W]<br>00000000           |                                  | ELVR0 [R/W]<br>00000000 00000000 |                              |  |  |
| 000034н                  | EIRR1 [R/W]<br>00000000    | ENIR1 [R/W]<br>00000000           | ELVR1 [R/W]<br>00000000 00000000 |                                  | External interrupt<br>12, 13 |  |  |
| 000038н                  | DICR [R/W]                 | HRCL [R/W]<br>0 11111             | Rese                             | erved                            | DLYI/I-unit                  |  |  |
| 00003Сн                  |                            | Rese                              | erved                            |                                  | Reserved                     |  |  |
| 000040н                  | SCR00 [R/W, W]<br>00000000 | SMR00 [R/W, W]<br>00000000        | SSR00 [R/W, R]<br>00001000       | RDR00/TDR00<br>[R/W]<br>00000000 | LINLICADTO                   |  |  |
| 000044н                  | ESCR00 [R/W]<br>00000X00   | ECCR00<br>[R/W, R, W]<br>000000XX | Rese                             | erved                            | - LIN-USART0                 |  |  |
| 000048н                  | SCR01 [R/W, W]<br>00000000 | SMR01 [R/W, W]<br>00000000        | SSR01 [R/W, R]<br>00001000       | RDR01/TDR01<br>[R/W]<br>00000000 | LINLIGARTA                   |  |  |
| 00004Сн                  | ESCR01 [R/W]<br>00000X00   | ECCR01<br>[R/W, R, W]<br>000000XX | Reserved                         |                                  | - LIN-USART1                 |  |  |
| 000050н                  | SCR02 [R/W, W]<br>00000000 | SMR02 [R/W, W]<br>00000000        | SSR02 [R/W, R]<br>00001000       | RDR02/TDR02<br>[R/W]<br>00000000 | LINLIGADTO                   |  |  |
| 000054н                  | ESCR02 [R/W]<br>00000X00   | ECCR02<br>[R/W, R, W]<br>000000XX | Rese                             | erved                            | - LIN-USART2                 |  |  |

| A ddws 5 5               |                                                  | Reg                               | ister                      |                                  | Black                                     |
|--------------------------|--------------------------------------------------|-----------------------------------|----------------------------|----------------------------------|-------------------------------------------|
| Address                  | +0                                               | +1                                | +2                         | +3                               | Block                                     |
| 000058н                  | SCR03 [R/W, W]<br>00000000                       | SMR03 [R/W, W]<br>00000000        | SSR03 [R/W, R]<br>00001000 | RDR03/TDR03<br>[R/W]<br>00000000 | LIN-USART3                                |
| 00005Сн                  | ESCR03 [R/W]<br>00000X00                         | ECCR03<br>[R/W, R, W]<br>000000XX | Rese                       | erved                            | LIN-OSAINTS                               |
| 000060н<br>to<br>00007Сн |                                                  | Rese                              | erved                      |                                  | Reserved                                  |
| 000080н                  | BGR100 [R/W]<br>00000000                         | BGR000 [R/W]<br>00000000          | BGR101 [R/W]<br>00000000   | BGR001 [R/W]<br>00000000         |                                           |
| 000084н                  | BGR102 [R/W]<br>00000000                         | BGR002 [R/W]<br>00000000          | BGR103 [R/W]<br>00000000   | BGR003 [R/W]<br>00000000         | Baud rate<br>Generator<br>LIN-USART0 to 3 |
| 000088н,<br>00008Сн      |                                                  | Rese                              | erved                      |                                  |                                           |
| 000090н<br>to<br>0000FCн |                                                  | Reserved                          |                            |                                  |                                           |
| 000100н                  |                                                  | 0 [R/W]<br>00010000               | Reserved                   | GCN20 [R/W]<br>0000              | PPG Control<br>0 to 3                     |
| 000104н                  |                                                  | [R/W]<br>00010000                 | Reserved                   | GCN21 [R/W]<br>0000              | PPG Control<br>4 to 7                     |
| 000108н                  |                                                  | Rese                              | erved                      |                                  | Reserved                                  |
| 000110н                  | PTMR<br>11111111                                 | 00 [R]<br>11111111                | PCSR<br>XXXXXXXX           | 00 [W]<br>XXXXXXX                | PPG 0                                     |
| 000114н                  | PDUT00 [W]<br>XXXXXXXX XXXXXXX                   |                                   | PCNH00 [R/W]<br>0000000 -  | PCNL00 [R/W]<br>000000 - 0       | FFGU                                      |
| 000118н                  | PTMR01 [R] PCSR01 [W] 11111111 XXXXXXXX XXXXXXXX |                                   |                            | DDC 4                            |                                           |
| 00011Сн                  | PDUT01 [W]<br>XXXXXXXX XXXXXXX                   |                                   | PCNH01 [R/W]<br>0000000 -  | PCNL01 [R/W]<br>000000 - 0       | PPG 1                                     |
| 000120н                  | PTMR<br>11111111                                 | 02 [R]<br>11111111                | PCSR<br>XXXXXXXX           | 02 [W]<br>XXXXXXXX               | PPG 2                                     |
| 000124н                  |                                                  | 02 [W]<br>XXXXXXXX                | PCNH02 [R/W]<br>0000000 -  | PCNL02 [R/W]<br>000000 - 0       | FFG 2                                     |

| Address                  |                                 | Block                   |                                |                            |                             |
|--------------------------|---------------------------------|-------------------------|--------------------------------|----------------------------|-----------------------------|
| Address                  | +0                              | +1                      | +2 +3                          |                            | DIOCK                       |
| 000128н                  | PTMR<br>11111111                |                         |                                | 03 [W]<br>XXXXXXXX         |                             |
| 00012Сн                  | PDUT(<br>XXXXXXXX               | O3 [W]<br>XXXXXXXX      | PCNH03 [R/W]<br>0000000 -      | PCNL03 [R/W]<br>000000 - 0 | PPG 3                       |
| 000130н                  |                                 | 04 [R]<br>11111111      |                                | 04 [W]<br>XXXXXXXX         | PPG 4                       |
| 000134н                  | PDUT(<br>XXXXXXXX               | 04 [W]<br>XXXXXXXX      | PCNH04 [R/W]<br>0000000 -      | PCNL04 [R/W]<br>000000 - 0 | PPG 4                       |
| 000138н                  | PTMR<br>11111111                | 05 [R]<br>11111111      |                                | 05 [W]<br>XXXXXXXX         | DD0 5                       |
| 00013Сн                  | PDUT(<br>XXXXXXXX               | 05 [W]<br>XXXXXXXX      | PCNH05 [R/W]<br>0000000 -      | PCNL05 [R/W]<br>000000 - 0 | PPG 5                       |
| 000140н                  |                                 | 06 [R]<br>11111111      |                                | 06 [W]<br>XXXXXXXX         | DDC 0                       |
| 000144н                  |                                 |                         | PCNL06 [R/W]<br>000000 - 0     | PPG 6                      |                             |
| 000148н                  | PTMR<br>11111111                | 07 [R]<br>11111111      | PCSR07 [W]<br>XXXXXXXX XXXXXXX |                            | DDC 7                       |
| 00014Сн                  |                                 | 07 [W]<br>XXXXXXXX      | PCNH07 [R/W]<br>0000000 -      | PCNL07 [R/W]<br>000000 - 0 | PPG 7                       |
| 000150н<br>to<br>00017Сн |                                 | Res                     | erved                          |                            | Reserved                    |
| 000180н                  | Reserved                        | ICS01 [R/W]<br>00000000 | Reserved                       | ICS23 [R/W]<br>00000000    |                             |
| 000184н                  | IPCP<br>XXXXXXXX                | 0 [R]<br>XXXXXXXX       | IPCP1 [R] XXXXXXXX XXXXXXX     |                            | Input<br>Capture<br>0 to 3  |
| 000188н                  | IPCP<br>XXXXXXXX                | 2 [R]<br>XXXXXXXX       |                                | 3 [R]<br>XXXXXXXX          | 0.10.0                      |
| 00018Сн                  | OCS0 <sup>2</sup>               | [R/W]<br>0000 00        | OCS23 [R/W]                    |                            |                             |
| 000190н                  | OCCP0 [R/W]<br>XXXXXXXX XXXXXXX |                         |                                | 1 [R/W]<br>XXXXXXXX        | Output<br>Compare<br>0 to 3 |
| 000194н                  |                                 | 2 [R/W]<br>XXXXXXXX     |                                | 3 [R/W]<br>XXXXXXXX        | 0 10 0                      |
| 000198н,<br>00019Сн      |                                 | Res                     | erved                          |                            | Reserved                    |

| A ddroop                 |                                         | Reg                     | ister                     |                                | Disak                             |  |
|--------------------------|-----------------------------------------|-------------------------|---------------------------|--------------------------------|-----------------------------------|--|
| Address -                | +0                                      | +1                      | +2                        | +3                             | - Block                           |  |
| 0001А0н                  |                                         | Reserved                |                           | ADERL [R/W]<br>00000000        |                                   |  |
| 0001А4н                  | ADCS1 [R/W]<br>00000000                 | ADCS0 [R/W]<br>00000000 | ADCR1 [R]<br>000000XX     | ADCR0 [R]<br>XXXXXXXX          | A/D<br>Converter                  |  |
| 0001А8н                  | ADCT1 [R/W]<br>00010000                 | ADCT0 [R/W]<br>00101100 | ADSCH [R/W]<br>00000      | ADECH [R/W]<br>00000           | -                                 |  |
| 0001АСн                  |                                         | Rese                    | erved                     |                                | Reserved                          |  |
| 0001В0н                  |                                         | RO [W]<br>XXXXXXXX      |                           | 0 [R]<br>XXXXXXXX              | Reload Timer 0                    |  |
| 0001В4н                  | Rese                                    | erved                   | TMCSRH0<br>[R/W]<br>00000 | TMCSRL0<br>[R/W]<br>0 - 000000 | (PPG0, PPG1)                      |  |
| 0001В8н                  |                                         | R1 [W]<br>XXXXXXXX      |                           | 1 [R]<br>XXXXXXXX              | Reload Timer 1                    |  |
| 0001ВСн                  | Reserved                                |                         | TMCSRH1<br>[R/W]<br>00000 | TMCSRL1<br>[R/W]<br>0 - 000000 | (PPG2, PPG3)                      |  |
| 0001С0н                  |                                         | R2 [W]<br>XXXXXXXX      |                           | 2 [R]<br>XXXXXXXX              | Reload Timer 2                    |  |
| 0001С4н                  | Rese                                    | erved                   | TMCSRH2<br>[R/W]<br>00000 | TMCSRL2<br>[R/W]<br>0 - 000000 | (PPG4, PPG5)                      |  |
| 0001С8н                  |                                         | R3 [W]<br>XXXXXXXX      |                           | 3 [R]<br>XXXXXXXX              | Reload Timer 3                    |  |
| 0001ССн                  | Rese                                    | erved                   | TMCSRH3<br>[R/W]<br>00000 | TMCSRL3<br>[R/W]<br>0 - 000000 | (PPG6, PPG7)                      |  |
| 0001D0н<br>to<br>0001E7н | Reserved                                |                         |                           |                                | Reserved                          |  |
| 0001Е8н                  | TMRLR7 [W] TMR7 [R] XXXXXXXXX XXXXXXXXX |                         | Poload Timor 7            |                                |                                   |  |
| 0001ЕСн                  | Rese                                    | erved                   | TMCSRH7<br>[R/W]<br>00000 | TMCSRL7<br>[R/W]<br>0 - 000000 | Reload Timer 7<br>(A/D converter) |  |
| 0001F0н                  | TCDT0<br>XXXXXXXX                       | [R/W]<br>XXXXXXXX       | Reserved                  | TCCS0 [R/W]<br>00000000        | Free-run Timer 0<br>(ICU0, ICU1)  |  |

| A -1 -1                  |                          | Disale                      |                       |                         |                                  |
|--------------------------|--------------------------|-----------------------------|-----------------------|-------------------------|----------------------------------|
| Address                  | +0                       | +1                          | +2                    | +3                      | Block                            |
| 0001F4н                  | TCDT1<br>XXXXXXXX        |                             | Reserved              | TCCS1 [R/W]<br>00000000 | Free-run Timer 1<br>(ICU2, ICU3) |
| 0001F8н                  | TCDT2<br>XXXXXXXX        |                             | Reserved              | TCCS2 [R/W]<br>00000000 | Free-run Timer 2<br>(OCU0, OCU1) |
| 0001FСн                  | TCDT3<br>XXXXXXXX        |                             | Reserved              | TCCS3 [R/W]<br>00000000 | Free-run Timer 3<br>(OCU2, OCU3) |
| 000200н                  | 000                      | DMACA0<br>00000 0000XXXX X  | XXXXXXX XXXXX         | ΚΧΧ                     |                                  |
| 000204н                  | 000                      | DMACB0<br>000000 00000000 X |                       | XXX                     |                                  |
| 000208н                  | 000                      | DMACA1<br>00000 0000XXXX X  |                       | ΚΧΧ                     |                                  |
| 00020Сн                  | 000                      | DMACB1                      |                       | XXX                     |                                  |
| 000210н                  | 000                      | DMACA2<br>00000 0000XXXX X  |                       | ΚΧΧ                     |                                  |
| 000214н                  | 000                      | DMACB2<br>000000 00000000 X |                       | XX                      |                                  |
| 000218н                  | 000                      | DMACA3<br>00000 0000XXXX X  |                       | ΚΧΧ                     | DMAC                             |
| 00021Сн                  | 000                      |                             |                       |                         |                                  |
| 000220н                  | 000                      | DMACA4<br>00000 0000XXXX X  |                       | ΚΧΧ                     |                                  |
| 000224н                  | 000                      | DMACB4<br>000000 00000000 X |                       | XXX                     |                                  |
| 000228н<br>to<br>00023Сн |                          | Rese                        | erved                 |                         |                                  |
| 000240н                  | DMACR [R/W]<br>0 0000    |                             | Reserved              |                         |                                  |
| 000244н<br>to<br>0002FCн |                          | Reserved                    |                       |                         |                                  |
| 000300н                  | UDRC1 [W]<br>00000000    | UDRC0 [W]<br>00000000       | UDCR1 [R]<br>00000000 | UDCR0 [R]<br>00000000   | /5                               |
| 000304н                  | UDCCH0 [R/W]<br>00000000 | UDCCL0 [R/W]<br>00001000    | Reserved              | UDCS0 [R/W]<br>00000000 | Up/Down<br>Counter<br>0, 1       |
| 000308н                  | UDCCH1 [R/W]<br>00000000 | UDCCL1 [R/W]<br>00001000    | Reserved              | UDCS1 [R/W]<br>00000000 |                                  |
| 00030Сн<br>to            | Reserved                 |                             |                       |                         | Reserved                         |
| 000364н                  |                          |                             |                       |                         | (Continued                       |

| Address                  |                         | Block                    |                          |                          |                              |
|--------------------------|-------------------------|--------------------------|--------------------------|--------------------------|------------------------------|
| Address                  | +0                      | +1                       | +2                       | +3                       | BIOCK                        |
| 000368н                  | IBCR2 [R/W]<br>00000000 | IBSR2 [R]<br>00000000    | ITBAH2 [R/W]<br>00       | ITBAL2 [R/W]<br>00000000 |                              |
| 00036Сн                  | ITMKH2 [R/W]<br>00 11   | ITMKL2 [R/W]<br>11111111 | ISMK2 [R/W]<br>01111111  | ISBA2 [R/W]<br>- 0000000 | I <sup>2</sup> C 2           |
| 000370н                  | Reserved                | IDAR2 [R/W]<br>00000000  | ICCR2 [R/W]<br>- 0011111 | Reserved                 |                              |
| 000374н                  | IBCR3 [R/W]<br>00000000 | IBSR3 [R]<br>00000000    | ITBAH3 [R/W]<br>00       | ITBAL3 [R/W]<br>00000000 |                              |
| 000378н                  | ITMKH3 [R/W]<br>00 11   | ITMKL3 [R/W]<br>11111111 | ISMK3 [R/W]<br>01111111  | ISBA3 [R/W]<br>- 0000000 | I <sup>2</sup> C 3           |
| 00037Сн                  | Reserved                | IDAR3 [R/W]<br>00000000  | ICCR3 [R/W]<br>- 0011111 | Reserved                 |                              |
| 000380н<br>to<br>00038Сн |                         | Rese                     | erved                    |                          | Reserved                     |
| 000390н                  | ROM:<br>11111111        |                          | Rese                     | erved                    | ROM Select<br>Register       |
| 000394н<br>to<br>0003ECн |                         |                          | Reserved                 |                          |                              |
| 0003F0н                  | XXXX                    | BSD0<br>XXXXX XXXXXXXX   | [W]<br>XXXXXXXX XXXX     | (XXX                     |                              |
| 0003F4н                  | XXXX                    | BSD1<br>XXXXX XXXXXXX    | [R/W]<br>XXXXXXXX XXXX   | (XXX                     | Bit Search                   |
| 0003F8н                  | XXXX                    | BSDC<br>XXXXX XXXXXXXX   | [W]<br>XXXXXXXX XXXX     | (XXX                     | Module                       |
| 0003FСн                  | XXXX                    | BSRF<br>(XXXX XXXXXXX    | R [R]<br>XXXXXXXX XXXX   | (XXX                     |                              |
| 000400н<br>to<br>00043Сн |                         | Rese                     | erved                    |                          | Reserved                     |
| 000440н                  | ICR00 [R/W]<br>11111    | ICR01 [R/W]<br>11111     | ICR02 [R/W]<br>11111     | ICR03 [R/W]<br>11111     |                              |
| 000444н                  | ICR04[R/W]<br>11111     | ICR05 [R/W]<br>11111     | ICR06 [R/W]<br>11111     | ICR07 [R/W]<br>11111     |                              |
| 000448н                  | ICR08 [R/W]<br>11111    | ICR09 [R/W]<br>11111     | ICR10[R/W]<br>11111      | ICR11 [R/W]<br>11111     | Interrupt<br>Control<br>Unit |
| 00044Сн                  | ICR12 [R/W]<br>11111    | ICR13[R/W]<br>11111      | ICR14[R/W]<br>11111      | ICR15[R/W]<br>11111      | Offic                        |
| 000450н                  | ICR16[R/W]<br>11111     | ICR17[R/W]<br>11111      | ICR18 [R/W]<br>11111     | ICR19 [R/W]<br>11111     |                              |

| A -l -l |                        | Reg                     | ister                   |                           | Disal                        |
|---------|------------------------|-------------------------|-------------------------|---------------------------|------------------------------|
| Address | +0                     | +1                      | +2                      | +3                        | Block                        |
| 000454н | ICR20 [R/W]<br>11111   | ICR21 [R/W]<br>11111    | ICR22 [R/W]<br>11111    | ICR23 [R/W]<br>11111      |                              |
| 000458н | ICR24[R/W]<br>11111    | ICR25[R/W]<br>11111     | ICR26[R/W]<br>11111     | ICR27[R/W]<br>11111       |                              |
| 00045Сн | ICR28[R/W]<br>11111    | ICR29 [R/W]<br>11111    | ICR30[R/W]<br>11111     | ICR31[R/W]<br>11111       |                              |
| 000460н | ICR32[R/W]<br>11111    | ICR33[R/W]<br>11111     | ICR34[R/W]<br>11111     | ICR35[R/W]<br>11111       |                              |
| 000464н | ICR36[R/W]<br>11111    | ICR37[R/W]<br>11111     | ICR38 [R/W]<br>11111    | ICR39 [R/W]<br>11111      |                              |
| 000468н | ICR40[R/W]<br>11111    | ICR41[R/W]<br>11111     | ICR42 [R/W]<br>11111    | ICR43 [R/W]<br>11111      | Interrupt<br>Control<br>Unit |
| 00046Сн | ICR44[R/W]<br>11111    | ICR45[R/W]<br>11111     | ICR46[R/W]<br>11111     | ICR47[R/W]<br>11111       | O m                          |
| 000470н | ICR48 [R/W]<br>11111   | ICR49 [R/W]<br>11111    | ICR50 [R/W]<br>11111    | ICR51 [R/W]<br>11111      |                              |
| 000474н | ICR52[R/W]<br>11111    | ICR53[R/W]<br>11111     | ICR54[R/W]<br>11111     | ICR55[R/W]<br>11111       |                              |
| 000478н | ICR56 [R/W]<br>11111   | ICR57[R/W]<br>11111     | ICR58 [R/W]<br>11111    | ICR59 [R/W]<br>11111      |                              |
| 00047Сн | ICR60[R/W]<br>11111    | ICR61 [R/W]<br>11111    | ICR62 [R/W]<br>11111    | ICR63 [R/W]<br>11111      |                              |
| 000480н | RSRR [R/W]<br>10000000 | STCR [R/W]<br>001100-1  | TBCR [R/W]<br>00XXXX00  | CTBR [W]<br>XXXXXXXX      | Clock<br>Control             |
| 000484н | CLKR [R/W]<br>000      | WPR [W]<br>XXXXXXXX     | DIVR0 [R/W]<br>00000011 | DIVR1 [R/W]<br>00000000   | Unit                         |
| 000488н |                        | Rese                    | erved                   |                           | Reserved                     |
| 00048Сн | PLLDIVM [R/W]<br>0000  | PLLDIVN [R/W]<br>000000 | PLLDIVG [R/W]<br>0000   | PLLMULG [R/W]<br>00000000 | PLL Clock                    |
| 000490н | PLLCTRL [R/W]<br>0000  | Reserved                |                         |                           | Gear Unit                    |
| 000494н |                        | Rese                    | Reserved                |                           |                              |
| 000498н | PORTEN [R/W]<br>00     |                         | Reserved                |                           | Port Input Enable<br>Control |
| 00049Сн |                        | Rese                    | erved                   |                           | Reserved                     |

| A .l. l                  |                          | Reg                       | ister                       |                                     | Disal                                 |  |
|--------------------------|--------------------------|---------------------------|-----------------------------|-------------------------------------|---------------------------------------|--|
| Address                  | +0                       | +1                        | +2                          | +3                                  | Block                                 |  |
| 0004А0н                  | Reserved                 | WTCER [R/W]<br>00         |                             | WTCR [R/W]<br>00000000 000 - 00 - 0 |                                       |  |
| 0004А4н                  | Reserved                 | XXX                       | WTBR [R/W]<br>XX XXXXXXXX X | XXXXXX                              | Real Time Clock<br>(Watch Timer)      |  |
| 0004А8н                  | WTHR [R/W]<br>00000      | WTMR [R/W]<br>000000      | WTSR [R/W]<br>000000        | Reserved                            |                                       |  |
| 0004АСн                  | Rese                     | erved                     | CSCFG [R/W]<br>0X000000     | CMCFG [R/W]<br>00000000             | Clock Monitor                         |  |
| 0004В0н,<br>0004В4н      |                          | Rese                      | erved                       |                                     | Reserved                              |  |
| 0004В8н                  | CMPR<br>000010           | [R/W]<br>11111101         | Reserved                    | CMCR [R/W]<br>- 001 00              | Clock                                 |  |
| 0004ВСн                  | CMT1<br>00000000         | [R/W]<br>1 0000           |                             | [R/W]<br>000000                     | Modulator                             |  |
| 0004С0н                  | CANPRE [R/W]<br>00000000 | CANCKD [R/W]<br>00        | Rese                        | erved                               | CAN Clock<br>Control                  |  |
| 0004С4н                  | Reserved                 | LVDET [R/W]<br>00000 - 00 | HWWDE [R/W]<br>00           | HWWD [R/W, W]<br>00011000           | Low-voltage<br>Detection              |  |
| 0004С8н                  | OSCRH [R/W]<br>000 001   | OSCRL [R/W]<br>000        | Rese                        | erved                               | Main-<br>Oscillation<br>Stabilization |  |
| 0004ССн                  |                          | Reserved                  |                             |                                     |                                       |  |
| 0004D0н<br>to<br>0007F8н |                          | Rese                      | erved                       |                                     | Reserved                              |  |
| 0007FСн                  | Reserved                 | MODR [W]<br>XXXXXXXX      | Rese                        | erved                               | Mode Register                         |  |
| 000800н<br>to<br>000СFСн |                          | Rese                      | erved                       |                                     | Reserved                              |  |
| 000D00н<br>to<br>000D08н |                          | Rese                      | erved                       |                                     |                                       |  |
| 000D0Сн                  | Rese                     | erved                     | PDRD14 [R]<br>XXXX          | PDRD15 [R]<br>XXXX                  |                                       |  |
| 000D10н                  | Reserved                 | PDRD17 [R]<br>XXXXXXXX    |                             |                                     | R-bus<br>Port Data                    |  |
| 000D14н                  | PDRD20 [R]<br>- XXX- XXX | PDRD21 [R]<br>- XXX- XXX  | PDRD22 [R]<br>XXXX          | Reserved                            | Direct Read<br>Register               |  |
| 000D18н                  | PDRD24 [R]<br>XXXXXXXX   | Reserved                  |                             |                                     |                                       |  |
| 000D1Cн                  | Reserved                 | PDRD29 [R]<br>XXXXXXXX    | Rese                        | erved                               |                                       |  |
| 000D20н                  |                          | Rese                      | erved                       |                                     | (Continued                            |  |

| Address                  |                          | Reg                      | ister                |                      | Block                      |  |
|--------------------------|--------------------------|--------------------------|----------------------|----------------------|----------------------------|--|
| Address                  | +0                       | +1                       | BIOCK                |                      |                            |  |
| 000D24н<br>to<br>000D3Cн |                          | Rese                     | erved                |                      | Reserved                   |  |
| 000D40н<br>to<br>000D48н |                          | Rese                     | erved                |                      |                            |  |
| 000D4Сн                  | Rese                     | erved                    | DDR14 [R/W]<br>0000  | DDR15 [R/W]<br>0000  |                            |  |
| 000D50н                  | Reserved                 | DDR17 [R/W]<br>00000000  | Rese                 | erved                | R-bus                      |  |
| 000D54н                  | DDR20 [R/W]<br>-000- 000 | DDR21 [R/W]<br>-000- 000 | DDR22 [R/W]<br>0000  | Reserved             | Port Direction<br>Register |  |
| 000D58н                  | DDR24 [R/W]<br>00000000  |                          | Reserved             | 1                    |                            |  |
| 000D5Сн                  | Reserved                 | DDR29 [R/W]<br>00000000  | Rese                 | erved                |                            |  |
| 000D60н                  |                          | Rese                     | erved                |                      |                            |  |
| 000D64н                  |                          |                          |                      |                      |                            |  |
| to<br>000D7Сн            |                          | Reserved                 |                      |                      |                            |  |
| 000D80н<br>to<br>000D88н |                          | Reserved                 |                      |                      |                            |  |
| 000D8Сн                  | Rese                     | erved                    | PFR14 [R/W]<br>0000  | PFR15 [R/W]<br>0000  |                            |  |
| 000D90н                  | Reserved                 | PFR17 [R/W]<br>00000000  | Rese                 | erved                | R-bus                      |  |
| 000D94н                  | PFR20 [R/W]<br>-000- 000 | PFR21 [R/W]<br>-000- 000 | PFR22 [R/W]<br>0000  | Reserved             | Port Function<br>Register  |  |
| 000D98н                  | PFR24 [R/W]<br>00000000  |                          | Reserved             |                      |                            |  |
| 000D9Сн                  | Reserved                 | PFR29 [R/W]<br>00000000  | Rese                 | erved                |                            |  |
| 000DA0н                  |                          | Rese                     | erved                |                      | ]                          |  |
| 000DA4н<br>to<br>000DBCн |                          | Reserved                 |                      |                      |                            |  |
| 000DC0н<br>to<br>000DC8н |                          | Reserved                 |                      |                      |                            |  |
| 000ДССн                  | Rese                     | erved                    | EPFR14 [R/W]<br>0000 | EPFR15 [R/W]<br>0000 | - Function<br>Register     |  |

| A ddrago                  |                            | Reg                        | ister                |                      | Pleak                                   |  |
|---------------------------|----------------------------|----------------------------|----------------------|----------------------|-----------------------------------------|--|
| Address                   | +0                         | +1                         | +2                   | +3                   | Block                                   |  |
| 000DD0н                   | D0 <sub>H</sub> Reserved   |                            |                      |                      |                                         |  |
| 000DD4н                   | EPFR20 [R/W]<br>- 000- 000 |                            |                      |                      |                                         |  |
| 000DD8н                   |                            | Rese                       | erved                |                      | Function                                |  |
| 000DDCн                   |                            | Rese                       | erved                |                      | Register                                |  |
| 000DE0н                   |                            | Rese                       | erved                |                      |                                         |  |
| 000DE4н                   |                            | _                          |                      |                      | _                                       |  |
| to<br>000DFC <sub>H</sub> |                            | Rese                       | erved                |                      | Reserved                                |  |
| 000E00н<br>to<br>000E08н  |                            | Rese                       | erved                |                      |                                         |  |
| 000Е0Сн                   | Rese                       | erved                      | PODR14 [R/W]<br>0000 | PODR15 [R/W]<br>0000 |                                         |  |
| 000Е10н                   | Reserved                   | PODR17 [R/W]<br>00000000   | Rese                 | erved                | R-bus Port Output Drive Select Register |  |
| 000Е14н                   | PODR20 [R/W]<br>- 000- 000 | PODR21 [R/W]<br>- 000- 000 | PODR22 [R/W]<br>0000 | Reserved             |                                         |  |
| 000Е18н                   | PODR24 [R/W]<br>00000000   |                            | Reserved             |                      | _                                       |  |
| 000Е1Сн                   | Reserved                   | PODR29 [R/W]<br>00000000   | Rese                 | erved                |                                         |  |
| 000Е20н                   |                            | Rese                       | erved                |                      |                                         |  |
| 000E24н<br>to<br>000E3Cн  |                            | Rese                       | erved                |                      | Reserved                                |  |
| 000E40н<br>to<br>000E48н  |                            | Rese                       | erved                |                      |                                         |  |
| 000Е4Сн                   | Rese                       | erved                      | PILR14 [R/W]<br>0000 | PILR15 [R/W]<br>0000 |                                         |  |
| 000Е50н                   | Reserved                   | PILR17 [R/W]<br>00000000   | Rese                 | erved                | R-bus Pin                               |  |
| 000Е54н                   | PILR20 [R/W]<br>- 000- 000 | PILR21 [R/W]<br>-000- 000  | PILR22 [R/W]<br>0000 | Reserved             | Input Level Select<br>Register          |  |
| 000Е58н                   | PILR24 [R/W]<br>00000000   |                            | Reserved             |                      |                                         |  |
| 000Е5Сн                   | Reserved                   | PILR29 [R/W]<br>00000000   | Rese                 | erved                |                                         |  |
| 000Е60н                   |                            | Rese                       | erved                |                      | (Continue)                              |  |

| Address                  |                             | Block                       |                       |                       |                                          |
|--------------------------|-----------------------------|-----------------------------|-----------------------|-----------------------|------------------------------------------|
| Address                  | +0                          | +1                          | +2                    | +3                    | Бюск                                     |
| 000E64н<br>to<br>000E7Cн |                             | Rese                        | erved                 |                       | Reserved                                 |
| 000E80н<br>to<br>000E88н |                             | Rese                        | erved                 |                       |                                          |
| 000Е8Сн                  | Rese                        | erved                       | EPILR14 [R/W]<br>0000 | EPILR15 [R/W]<br>0000 |                                          |
| 000Е90н                  | Reserved                    | EPILR17 [R/W]<br>00000000   | Rese                  | erved                 | R-bus Port Extra Input Level Select      |
| 000Е94н                  | EPILR20 [R/W]<br>- 000- 000 | EPILR21 [R/W]<br>- 000- 000 | EPILR22 [R/W]<br>0000 | Reserved              | Register                                 |
| 000Е98н                  | EPILR24 [R/W]<br>00000000   |                             | Reserved              |                       |                                          |
| 000E9Cн,<br>000EA0н      |                             | Rese                        | erved                 |                       |                                          |
| 000EA4н<br>to<br>000EBCн |                             | Reserved                    |                       |                       |                                          |
| 000EC0н<br>to<br>000EC8н |                             | Rese                        | erved                 |                       |                                          |
| 000ЕССн                  | Rese                        | erved                       | PPER14 [R/W]<br>0000  | PPER15 [R/W]<br>0000  |                                          |
| 000ЕD0н                  | Reserved                    | PPER17 [R/W]<br>00000000    | Rese                  | erved                 | R-bus Port<br>Pull-up/down               |
| 000ЕD4н                  | PPER20 [R/W]<br>-000- 000   | PPER21 [R/W]<br>-000- 000   | PPER22 [R/W]<br>0000  | Reserved              | Enable<br>Register                       |
| 000ЕD8н                  | PPER24 [R/W]<br>00000000    |                             | Reserved              |                       |                                          |
| 000EDCн                  | Reserved                    | PPER29 [R/W]<br>00000000    | Rese                  | erved                 |                                          |
| 000ЕЕ0н                  |                             |                             |                       |                       |                                          |
| 000EE4н<br>to<br>000EFCн |                             | Reserved                    |                       |                       |                                          |
| 000F00н<br>to<br>000F08н |                             | Rese                        | erved                 |                       | R-bus Port Pull-up/down Control Register |

| Address                  |                          | Reg                                     | ister                     |                      | Block    |  |  |  |  |
|--------------------------|--------------------------|-----------------------------------------|---------------------------|----------------------|----------|--|--|--|--|
| Address                  | +0                       | +1                                      | +2                        | +3                   | БЮСК     |  |  |  |  |
| 000F0Сн                  | Rese                     | erved                                   | PPCR14 [R/W]<br>1111      | PPCR15 [R/W]<br>1111 |          |  |  |  |  |
| 000F10н                  | Reserved                 | PPCR17 [R/W]<br>11111111                | Rese                      | erved                |          |  |  |  |  |
| 000F14н                  | PPCR20 [R/W]<br>-111-111 | R-bus Port<br>Pull-up/down<br>Control   |                           |                      |          |  |  |  |  |
| 000F18н                  | PPCR24 [R/W]<br>11111111 |                                         | Reserved                  |                      | Register |  |  |  |  |
| 000F1Сн                  | Reserved                 | Reserved PPCR29 [R/W] Reserved          |                           |                      |          |  |  |  |  |
| 000F20н                  |                          | Rese                                    | erved                     |                      |          |  |  |  |  |
| 000F24н<br>to<br>000F3Сн | Reserved                 |                                         |                           |                      |          |  |  |  |  |
| 001000н                  | XXX                      | DMASA0 [R/W] XXXXXXXX XXXXXXXX XXXXXXXX |                           |                      |          |  |  |  |  |
| 001004н                  | XXX                      |                                         | 0 [R/W]<br>XXXXXXXX XXXX  | (XXX                 | DMAC     |  |  |  |  |
| 001008н                  | XXX                      |                                         | 1 [R/W]<br>XXXXXXXX XXXX  | ΚΧΧΧ                 |          |  |  |  |  |
| 00100Сн                  | XXX                      |                                         | \1 [R/W]<br>XXXXXXXX XXXX | (XXX                 |          |  |  |  |  |
| 001010н                  | XXX                      |                                         | 2 [R/W]<br>XXXXXXXX XXXX  | (XXX                 |          |  |  |  |  |
| 001014н                  | XXX                      |                                         | A2 [R/W]<br>XXXXXXXX XXXX | (XXX                 | DIVIAC   |  |  |  |  |
| 001018н                  | XXX                      |                                         | 3 [R/W]<br>XXXXXXXX XXXX  | (XXX                 |          |  |  |  |  |
| 00101Сн                  | XXX                      |                                         | 3 [R/W]<br>XXXXXXXX XXXX  | (XXX                 |          |  |  |  |  |
| 001020н                  | XXX                      |                                         | 4 [R/W]<br>XXXXXXXX XXXX  | (XXX                 |          |  |  |  |  |
| 001024н                  | XXX                      |                                         | 4 [R/W]<br>XXXXXXXX XXXX  | (XXX                 |          |  |  |  |  |
| 001028н<br>to<br>006FFCн |                          | Rese                                    | erved                     |                      | Reserved |  |  |  |  |

| Address                   |                                 | Reg                  | ister                             |                              | Block                    |  |
|---------------------------|---------------------------------|----------------------|-----------------------------------|------------------------------|--------------------------|--|
| Address                   | +0                              | +1                   | +2                                | +3                           | Block                    |  |
| 007000н                   | FMCS [R/W]<br>01101000          | FMCR [R/W]<br>0000   | FCHCF                             | R [R/W]<br>10000011          | Flash Memory/            |  |
| 007004н                   | FMWT<br>11111111                | [R/W]<br>01011101    | FMWT2 [R/W]<br>- 101              | FMPS [R/W]<br>000            | I-Cache<br>Control       |  |
| 007008н                   |                                 |                      | C [R]                             | 00                           | Register                 |  |
| 00700Сн                   |                                 |                      | 0 [R/W]<br>0 00000000 000000      | 00                           | I-Cache<br>Non-cacheable |  |
| 007010н                   |                                 |                      | 1 [R/W]<br>) 00000000 000000      | 00                           | area setting<br>Register |  |
| 007014н                   |                                 | D                    |                                   |                              | Danasa                   |  |
| to<br>00AFFC <sub>H</sub> |                                 | Kes                  | erved                             |                              | Reserved                 |  |
| 00В000н<br>to             | BI-F                            | ROM size is 4 Kbyte  | s : 00B000н to 00BF               | FFн                          | BI-ROM<br>4 Kbytes       |  |
| 00BFFCн                   |                                 |                      |                                   |                              | 4 Noytes                 |  |
| 00С000н<br>to             |                                 | Reserved             |                                   |                              |                          |  |
| 00С3FCн                   |                                 | 1100                 | erved                             |                              | 110001100                |  |
| 00С400н                   | CTRLR<br>00000000               |                      |                                   | 4 [R/W]<br>00000000          |                          |  |
| 00С404н                   | ERRC1<br>00000000               | NT4 [R]<br>00000000  | BTR4<br>00100011                  | CAN 4<br>Control<br>Register |                          |  |
| 00С408н                   | INTR<br>00000000                | 4 [R]<br>00000000    | TESTR4 [R/W]<br>00000000 X0000000 |                              |                          |  |
| 00С40Сн                   | BRPE4<br>00000000               | I [R/W]<br>00000000  | Rese                              | erved                        |                          |  |
| 00С410н                   | IF1CRE0<br>00000000             |                      |                                   | K4 [R/W]<br>00000000         |                          |  |
| 00С414н                   | IF1MSK<br>11111111              |                      | IF1MSK<br>11111111                |                              |                          |  |
| 00С418н                   |                                 | 24 [R/W]<br>00000000 |                                   | 14 [R/W]<br>00000000         |                          |  |
| 00С41Сн                   | IF1MCTI<br>00000000             | R4 [R/W]<br>00000000 | erved                             | CAN 4<br>IF1 Register        |                          |  |
| 00С420н                   | IF1DTA<br>00000000              |                      | IF1DTA2<br>00000000               | 24 [R/W]<br>00000000         |                          |  |
| 00С424н                   | IF1DTB <sup>-</sup><br>00000000 |                      | IF1DTB2<br>00000000               | 24 [R/W]<br>00000000         |                          |  |
| 00С428н,<br>00С42Сн       |                                 | Res                  | erved                             |                              |                          |  |



| Address                  |                        | Regi | ister                               |                                     | Block        |
|--------------------------|------------------------|------|-------------------------------------|-------------------------------------|--------------|
| Address                  | +0                     | +1   | +2                                  | +3                                  | — BIOCK      |
| 00С430н                  | IF1DTA24<br>00000000 0 |      |                                     | 14 [R/W]<br>00000000                |              |
| 00С434н                  | IF1DTB24<br>00000000 0 |      |                                     | IF1DTB14 [R/W]<br>00000000 00000000 |              |
| 00С438н,<br>00С43Сн      |                        | Rese | erved                               |                                     |              |
| 00С440н                  | IF2CREQ4<br>00000000 ( |      |                                     | K4 [R/W]<br>00000000                |              |
| 00С444н                  | IF2MSK24<br>11111111 1 |      |                                     | 14 [R/W]<br>11111111                |              |
| 00С448н                  | IF2ARB24<br>00000000 0 |      |                                     | 14 [R/W]<br>00000000                |              |
| 00С44Сн                  | IF2MCTR4<br>00000000 0 |      | Res                                 | erved                               |              |
| 00С450н                  | IF2DTA14<br>00000000 0 |      |                                     | IF2DTA24 [R/W]<br>00000000 00000000 |              |
| 00С454н                  | IE2DTB14 [R/M]         |      | IF2DTB<br>00000000                  | CAN 4<br>IF2 Register               |              |
| 00С458н,<br>00С45Сн      |                        | Rese | erved                               |                                     |              |
| 00С460н                  | IF2DTA24<br>00000000 0 |      | IF2DTA14 [R/W]<br>00000000 00000000 |                                     |              |
| 00С464н                  | IF2DTB24<br>00000000 0 |      | IF2DTB<br>00000000                  |                                     |              |
| 00С468н<br>to<br>00С47Сн |                        | Rese | erved                               |                                     |              |
| 00С480н                  | TREQR2<br>00000000 0   |      |                                     | R14 [R]<br>00000000                 |              |
| 00С484н                  | TREQR4<br>00000000 (   |      |                                     | R34 [R]<br>00000000                 | 1            |
| 00С488н                  | TREQR6                 |      |                                     | R54 [R]<br>00000000                 | CAN 4        |
| 00С48Сн                  | TREOR84 IR1            |      |                                     | R74 [R]<br>00000000                 | Status Flags |
| 00С490н                  | NEWDT2<br>00000000     |      |                                     | 0T14 [R]<br>00000000                |              |
| 00С494н                  | NEWDT4<br>00000000 (   |      |                                     | 0T34 [R]<br>00000000                |              |

| Address                  |                                   | Block |                                 |                         |                       |  |
|--------------------------|-----------------------------------|-------|---------------------------------|-------------------------|-----------------------|--|
| Address                  | +0                                | +1    | +2                              | +2 +3                   |                       |  |
| 00С498н                  | NEWDT<br>00000000                 |       |                                 | DT54 [R]<br>0 00000000  |                       |  |
| 00С49Сн                  | NEWDT<br>00000000                 |       |                                 | DT74 [R]<br>0 00000000  |                       |  |
| 00С4А0н                  | INTPND<br>00000000                |       |                                 | ND14 [R]<br>0 00000000  |                       |  |
| 00С4А4н                  | INTPND<br>00000000                |       |                                 | ND34 [R]<br>0 00000000  |                       |  |
| 00С4А8н                  | 0000000 0000000                   |       |                                 | ND54 [R]<br>0 00000000  |                       |  |
| 00С4АСн                  | 00000000 00000000<br>MSGVAL24 [R] |       |                                 | ND74 [R]<br>0 00000000  | CAN 4 Status Flags    |  |
| 00С4В0н                  | 00000000 00000000<br>MSGVAL24 [R] |       |                                 | /AL14 [R]<br>0 00000000 |                       |  |
| 00С4В4н                  | MSGVAL<br>00000000                |       |                                 | /AL34 [R]<br>0 00000000 |                       |  |
| 00С4В8н                  | MSGVAL<br>00000000                |       | MSG\<br>0000000                 |                         |                       |  |
| 00С4ВСн                  | MSGVAL<br>00000000                |       | MSG\<br>0000000                 |                         |                       |  |
| 00С4С0н<br>to<br>00С4FСн |                                   | Rese  | erved                           |                         |                       |  |
| 00С500н                  | CTRLR5<br>00000000                |       |                                 | R5 [R/W]<br>0 00000000  |                       |  |
| 00С504н                  | ERRCN<br>00000000                 |       | BTR5 [R/W]<br>00100011 00000001 |                         | CAN 5                 |  |
| 00С508н                  | INTR5<br>00000000                 |       |                                 | R5 [R/W]<br>X0000000    | Control<br>Register   |  |
| 00С50Сн                  | BRPE5<br>00000000                 |       | Re                              | served                  |                       |  |
| 00С510н                  | IF1CREQ<br>00000000               |       |                                 | SK5 [R/W]<br>0 00000000 |                       |  |
| 00С514н                  | IF1MSK2<br>11111111               |       |                                 | K15 [R/W]<br>1 11111111 |                       |  |
| 00С518н                  | IF1ARB29<br>00000000              | • •   | -                               |                         | CAN 5<br>IF1 Register |  |
| 00С51Сн                  | IF1MCTR<br>00000000               | • •   | Re                              | served                  |                       |  |
| 00С520н                  | IF1DTA19                          |       |                                 | A25 [R/W]<br>0 00000000 |                       |  |

(Continued)

53

| A alabasas               |                                     | Registe | r                  |                         | Disala                |
|--------------------------|-------------------------------------|---------|--------------------|-------------------------|-----------------------|
| Address                  | +0 +                                | 1       | +2                 | +3                      | Block                 |
| 00С524н                  | IF1DTB15 [R/W]<br>00000000 00000000 | 0       |                    | 325 [R/W]<br>0 00000000 |                       |
| 00С528н,<br>00С52Сн      |                                     | Reserve | d                  |                         |                       |
| 00С530н                  | IF1DTA25 [R/W]<br>00000000 00000000 | 0       |                    | A15 [R/W]<br>0 00000000 | CAN 5<br>IF1 Register |
| 00С534н                  | IF1DTB25 [R/W]<br>00000000 00000000 | 0       |                    | 315 [R/W]<br>0 00000000 |                       |
| 00С538н,<br>00С53Сн      |                                     |         |                    |                         |                       |
| 00С540н                  | IF2CREQ5 [R/W]<br>00000000 00000000 | 1       |                    | SK5 [R/W]<br>0 00000000 |                       |
| 00С544н                  | IF2MSK25 [R/W]<br>11111111 11111111 | 1       |                    | K15 [R/W]<br>11111111   |                       |
| 00С548н                  | IF2ARB25 [R/W]<br>00000000 00000000 | 0       | IF2ARE<br>00000000 | CAN 5 IF2 Register      |                       |
| 00С54Сн                  | IF2MCTR5 [R/W]<br>00000000 00000000 | 0       | Res                |                         |                       |
| 00С550н                  | IF2DTA15 [R/W]<br>00000000 00000000 | 0       | IF2DT/<br>00000000 |                         |                       |
| 00С554н                  | IF2DTB15 [R/W]<br>00000000 00000000 | 0       | IF2DTE<br>00000000 |                         |                       |
| 00С558н,<br>00С55Сн      |                                     | Reserve | d                  |                         |                       |
| 00С560н                  | IF2DTA25 [R/W]<br>00000000 00000000 | 0       |                    | A15 [R/W]<br>0 00000000 |                       |
| 00С564н                  | IF2DTB25 [R/W]<br>00000000 00000000 | 0       |                    | 315 [R/W]<br>0 00000000 |                       |
| 00С568н<br>to<br>00С57Сн |                                     | Reserve | d                  |                         |                       |
| 00С580н                  | TREQR25 [R]<br>00000000 00000000    | 0       |                    | QR15 [R]<br>0 00000000  |                       |
| 00С584н                  | TREQR45 [R]<br>00000000 00000000    | 0       |                    | QR35 [R]<br>0 00000000  | CAN 5<br>Status Flags |
| 00С588н                  | TREQR65 [R]<br>00000000 00000000    | 0       |                    | QR55 [R]<br>0 00000000  |                       |

| Address                  |                    | Reg                               | ister                             |                                   | Block        |  |
|--------------------------|--------------------|-----------------------------------|-----------------------------------|-----------------------------------|--------------|--|
| Address                  | +0                 | +1                                | +2                                | +3                                | - Block      |  |
| 00С58Сн                  | TREQR<br>00000000  |                                   |                                   | R75 [R]<br>00000000               |              |  |
| 00С590н                  | NEWDT<br>00000000  |                                   |                                   | NEWDT15 [R]<br>00000000 00000000  |              |  |
| 00С594н                  | NEWDT<br>00000000  |                                   |                                   | 0T35 [R]<br>00000000              |              |  |
| 00С598н                  | NEWDT<br>00000000  |                                   |                                   | 0T55 [R]<br>00000000              |              |  |
| 00С59Сн                  | NEWDT<br>00000000  |                                   |                                   | 0T75 [R]<br>00000000              |              |  |
| 00С5А0н                  | INTPND<br>00000000 |                                   |                                   | D15 [R]<br>00000000               |              |  |
| 00С5А4н                  | INTPND<br>00000000 |                                   |                                   | D35 [R]<br>00000000               | CAN 5        |  |
| 00С5А8н                  | INTPND<br>00000000 |                                   | INTPND55 [R]<br>00000000 00000000 |                                   | Status Flags |  |
| 00С5АСн                  |                    | INTPND85 [R]<br>00000000 00000000 |                                   | INTPND75 [R]<br>00000000 00000000 |              |  |
| 00С5В0н                  | MSGVA<br>00000000  |                                   | MSGV/<br>00000000                 |                                   |              |  |
| 00С5В4н                  | MSGVA<br>00000000  |                                   | MSGV/<br>00000000                 |                                   |              |  |
| 00С5В8н                  | MSGVA<br>00000000  |                                   | MSGV/<br>00000000                 |                                   |              |  |
| 00С5ВСн                  | MSGVA<br>00000000  |                                   |                                   | AL75 [R]<br>00000000              |              |  |
| 00С5С0н<br>to<br>00ЕFFСн |                    | Rese                              | erved                             |                                   |              |  |
| 00F000н                  |                    | BCTRL                             | [R/W]<br>11111100 00000           | 000                               |              |  |
| 00F004н                  |                    |                                   | [R/W]<br>00000000 10 0            | 0000                              |              |  |
| 00F008н                  | 000                | BIAC<br>00000 00000000            | [R]<br>00000000 000000            | 000                               | EDSU / MPU   |  |
| 00F00Сн                  | 000                | BOAC<br>00000 00000000            | [R]<br>00000000 000000            | 000                               |              |  |
| 00F010н                  | 000                | BIRQ<br>00000 00000000            | [R/W]<br>00000000 000000          | 000                               |              |  |

| Adduses                  |       | Reg                                      | gister                     |        | Disale     |  |  |  |
|--------------------------|-------|------------------------------------------|----------------------------|--------|------------|--|--|--|
| Address —                | +0    | +1                                       | +2                         | +3     | Block      |  |  |  |
| 00F014н<br>to<br>00F01Сн | ,     | Res                                      | erved                      |        |            |  |  |  |
| 00F020н                  |       | BCR0                                     | [R/W]<br>00 00000000 00000 | 000    |            |  |  |  |
| 00F024н                  |       | BCR1 [R/W]<br>00000000 00000000 00000000 |                            |        |            |  |  |  |
| 00F028н                  |       | BCR2                                     | [R/W]<br>00 00000000 00000 | 000    | — EDSU/MPU |  |  |  |
| 00F02Сн                  |       |                                          | [R/W]<br>00 00000000 00000 | 000    |            |  |  |  |
| 00F030н<br>to<br>00F03Сн |       | Res                                      | erved                      |        |            |  |  |  |
| 00F040н<br>to<br>00F07Сн |       | Res                                      | erved                      |        | Reserved   |  |  |  |
| 00F080н                  | XXXXX | BAD0<br>XXX XXXXXXX                      | [R/W]<br>XXXXXXXX XX       | XXXXX  |            |  |  |  |
| 00F084н                  | XXXXX | BAD1<br>XXX XXXXXXX                      | [R/W]<br>XXXXXXXX XX       | XXXXX  |            |  |  |  |
| 00F088н                  | XXXXX | BAD2<br>XXX XXXXXXX                      | [R/W]<br>XXXXXXXX XX       | xxxxx  |            |  |  |  |
| 00F08Сн                  | XXXXX | BAD3<br>XXX XXXXXXX                      | [R/W]<br>XXXXXXXX XX       | xxxxx  |            |  |  |  |
| 00F090н                  | XXXXX | BAD4<br>XXXX XXXXXXX                     | [R/W]<br>XXXXXXXX XX       | xxxxxx | EDSU / MPU |  |  |  |
| 00F094н                  | XXXXX | BAD5<br>XXXX XXXXXXX                     | [R/W]<br>XXXXXXXX XX       | XXXXXX |            |  |  |  |
| 00F098н                  | XXXXX | BAD6<br>XXXX XXXXXXX                     | [R/W]<br>XXXXXXXX XX       | XXXXXX |            |  |  |  |
| 00F09Сн                  | XXXXX | BAD7<br>XXXX XXXXXXX                     | [R/W]<br>XXXXXXXX XX       | XXXXXX |            |  |  |  |
| 00F0A0н                  | XXXXX |                                          | [R/W]<br>XXXXXXXX XX       | xxxxxx |            |  |  |  |

| Address                  |              | Reg                                                 | ister                                    |                  | Plank                      |  |  |
|--------------------------|--------------|-----------------------------------------------------|------------------------------------------|------------------|----------------------------|--|--|
| Address                  | +0           | +1                                                  | +2                                       | +3               | Block                      |  |  |
| 00F0A4н                  | XXXX         | BAD9<br>XXXX XXXXXXX                                | [R/W]<br>XXXXXXXX XXX                    | XXXXX            |                            |  |  |
| 00F0A8н                  | XXXXX        | BAD10<br>XXXX XXXXXXX                               |                                          | XXXXX            |                            |  |  |
| 00F0АСн                  | XXXX         | BAD11<br>XXXX XXXXXXX                               | L 1                                      | XXXXX            |                            |  |  |
| 00F0B0н                  | XXXXX        |                                                     |                                          |                  |                            |  |  |
| 00F0В4н                  | XXXXX        | BAD13<br>XXXX XXXXXXX                               |                                          | XXXXX            | EDSU / MPU                 |  |  |
| 00F0В8н                  | XXXXX        | BAD14<br>XXXX XXXXXXX                               |                                          | XXXXX            |                            |  |  |
| 00F0ВСн                  | XXXX         | BAD15<br>XXXX XXXXXXX                               |                                          | XXXXX            |                            |  |  |
| 00F0C0н<br>to<br>00F0FCн |              | Res                                                 | erved                                    |                  |                            |  |  |
| 00F100н<br>to<br>02DFFCн |              | Reserved                                            |                                          |                  |                            |  |  |
| 02E000н<br>to<br>02FFFСн | MB91F463NA/F | 463NC Data RAM s<br>(data access                    | ize is 8 Kbytes: 02E<br>is 0 wait cycle) | E000н to 02FFFFн | D-RAM<br>8 Kbytes          |  |  |
| 030000н<br>to<br>0307FCн |              | NA/F463NC Instruction 030000 to access is 0 wait cy | o 0307FFн                                | •                | I/D-RAM<br>2 Kbytes        |  |  |
| 030800н<br>to<br>0BFFFCн |              | Res                                                 | erved                                    |                  | Reserved                   |  |  |
| 0С0000н<br>to<br>0DFFFCн |              | ROMS04 are                                          | a (128 Kbytes)                           |                  | Flash memory<br>256 Kbytes |  |  |
| 0E0000н<br>to<br>0FFFF4н |              | ROMS05 area (128 Kbytes)                            |                                          |                  |                            |  |  |
| 0FFFF8н                  |              |                                                     | V [R]<br>XXXX <sub>H</sub>               |                  | Reset/Mode                 |  |  |
| 0FFFFC <sub>н</sub>      |              |                                                     | / [R]<br>XXXXн                           |                  | Vector                     |  |  |
| 100000н<br>to<br>147FFСн |              | Res                                                 | erved                                    |                  | Reserved                   |  |  |

| Address                  |    | Register    |               |  |                           |  |  |  |
|--------------------------|----|-------------|---------------|--|---------------------------|--|--|--|
| Address                  | +0 | +0 +1 +2 +3 |               |  |                           |  |  |  |
| 148000н<br>to<br>14FFFСн |    | ROMS07 are  | a (32 Kbytes) |  | Flash memory<br>32 Kbytes |  |  |  |
| 148000н<br>to<br>4FFFFСн |    | Rese        | erved         |  | Reserved                  |  |  |  |

<sup>\*:</sup> The lower 16 bits (DTC15 to DTC0) of DMACA0 to DMACA4 cannot be accessed in bytes.

### **■ INTERRUPT SOURCE TABLE**

| Interrupt source                            | Inter<br>num |                  | Interru          | pt level         | Interr | upt vector             | Resource |
|---------------------------------------------|--------------|------------------|------------------|------------------|--------|------------------------|----------|
| interrupt source                            | Decimal      | Hexa-<br>decimal | Setting register | Register address | Offset | Default vector address | number*1 |
| Reset                                       | 0            | 00               | _                | _                | 3FСн   | 000FFFCн               | _        |
| Mode vector                                 | 1            | 01               | _                | _                | 3F8н   | 000FFF8н               | _        |
| System reserved                             | 2            | 02               | _                | _                | 3F4н   | 000FFF4н               | _        |
| System reserved                             | 3            | 03               | _                | _                | 3F0н   | 000FFF0н               | _        |
| System reserved                             | 4            | 04               | _                | _                | 3ЕСн   | 000FFFECн              | _        |
| CPU supervisor mode (INT #5 instruction) *2 | 5            | 05               |                  | _                | 3Е8н   | 000FFFE8н              | _        |
| Memory protection exception *2              | 6            | 06               | _                | _                | 3Е4н   | 000FFFE4н              |          |
| System reserved                             | 7            | 07               |                  | _                | 3Е0н   | 000FFFE0н              | _        |
| System reserved                             | 8            | 08               | _                | _                | 3DСн   | 000FFFDCн              | _        |
| System reserved                             | 9            | 09               |                  | _                | 3D8н   | 000FFFD8н              |          |
| System reserved                             | 10           | 0A               |                  | _                | 3D4н   | 000FFFD4н              |          |
| System reserved                             | 11           | 0B               | _                | _                | 3D0н   | 000FFFD0н              | _        |
| System reserved                             | 12           | 0C               | _                | _                | 3ССн   | 000FFFCCн              |          |
| System reserved                             | 13           | 0D               | _                | _                | 3С8н   | 000FFFC8н              |          |
| Undefined instruction exception             | 14           | 0E               | _                | _                | 3С4н   | 000FFFC4н              | _        |
| NMI request                                 | 15           | 0F               | F <sub>H</sub> f | ixed             | 3С0н   | 000FFFC0н              | _        |
| External interrupt 0                        | 16           | 10               | ICR00            | 440н             | 3ВСн   | 000FFFBCн              | 0, 16    |
| External interrupt 1                        | 17           | 11               | ICKUU            | 440H             | 3В8н   | 000FFFB8н              | 1, 17    |
| External interrupt 2                        | 18           | 12               | ICR01            | 441н             | 3В4н   | 000FFFB4н              | 2, 18    |
| External interrupt 3                        | 19           | 13               | ICRUI            | 441H             | 3В0н   | 000FFFB0н              | 3, 19    |
| External interrupt 4                        | 20           | 14               | ICR02            | 442н             | 3АСн   | 000FFFACн              | 20       |
| External interrupt 5                        | 21           | 15               | ICR02            | 44ZH             | 3А8н   | 000FFFA8н              | 21       |
| External interrupt 6                        | 22           | 16               | ICBOS            | 443н             | 3А4н   | 000FFFA4н              | 22       |
| External interrupt 7                        | 23           | 17               | ICR03            | 443H             | 3А0н   | 000FFFA0н              | 23       |
| System reserved                             | 24           | 18               | ICR04            | 444 <sub>H</sub> | 39Сн   | 000FFF9Сн              | _        |
| System reserved                             | 25           | 19               | ICK04            | 444              | 398н   | 000FFF98н              | _        |
| System reserved                             | 26           | 1A               | ICDOE            | 445              | 394н   | 000FFF94н              | _        |
| System reserved                             | 27           | 1B               | ICR05            | 445н             | 390н   | 000FFF90н              | _        |
| External interrupt 12                       | 28           | 1C               | ICDOS            | 446              | 38Сн   | 000FFF8Сн              |          |
| External interrupt 13                       | 29           | 1D               | ICR06            | 446н             | 388н   | 000FFF88н              | _        |
| System reserved                             | 30           | 1E               | ICD07            | 447:             | 384н   | 000FFF84н              | _        |
| System reserved                             | 31           | 1F               | ICR07            | 447н             | 380н   | 000FFF80н              | _        |

| Interrupt source  |         | errupt<br>ımber | Interru          | pt level         | Interr | upt vector             | Resource |
|-------------------|---------|-----------------|------------------|------------------|--------|------------------------|----------|
| interrupt source  | Decimal | Hexadecimal     | Setting register | Register address | Offset | Default vector address | number*1 |
| Reload timer 0    | 32      | 20              | ICR08            | 448н             | 37Сн   | 000FFF7Сн              | 4, 32    |
| Reload timer 1    | 33      | 21              | ICKUO            | 440H             | 378н   | 000FFF78н              | 5, 33    |
| Reload timer 2    | 34      | 22              | ICR09            | 449н             | 374н   | 000FFF74н              | 34       |
| Reload timer 3    | 35      | 23              | ICR09            | 449H             | 370н   | 000FFF70н              | 35       |
| System reserved   | 36      | 24              | ICD40            | 440              | 36Сн   | 000FFF6Сн              | 36       |
| System reserved   | 37      | 25              | ICR10            | 44Ан             | 368н   | 000FFF68н              | 37       |
| System reserved   | 38      | 26              | IOD44            | 440              | 364н   | 000FFF64н              | 38       |
| Reload timer 7    | 39      | 27              | ICR11            | 44Вн             | 360н   | 000FFF60н              | 39       |
| Free-run timer 0  | 40      | 28              | 10040            | 440              | 35Сн   | 000FFF5Сн              | 40       |
| Free-run timer 1  | 41      | 29              | ICR12            | 44Сн             | 358н   | 000FFF58н              | 41       |
| Free-run timer 2  | 42      | 2A              | 10040            | 445              | 354н   | 000FFF54н              | 42       |
| Free-run timer 3  | 43      | 2B              | ICR13            | 44Dн             | 350н   | 000FFF50н              | 43       |
| System reserved   | 44      | 2C              | 100.44           | 44Ен             | 34Сн   | 000FFF4Сн              | 44       |
| System reserved   | 45      | 2D              | ICR14            |                  | 348н   | 000FFF48н              | 45       |
| System reserved   | 46      | 2E              | 10045            | 4.45             | 344н   | 000FFF44н              | 46       |
| System reserved   | 47      | 2F              | ICR15            | 44Гн             | 340н   | 000FFF40н              | 47       |
| System reserved   | 48      | 30              | 10040            | 450              | 33Сн   | 000FFF3Сн              | _        |
| System reserved   | 49      | 31              | ICR16            | 450н             | 338н   | 000FFF38н              | _        |
| System reserved   | 50      | 32              | 10047            | 454              | 334н   | 000FFF34н              |          |
| System reserved   | 51      | 33              | ICR17            | 451н             | 330н   | 000FFF30н              |          |
| CAN 4             | 52      | 34              | 10040            | 450              | 32Сн   | 000FFF2Сн              | _        |
| CAN 5             | 53      | 35              | ICR18            | 452н             | 328н   | 000FFF28н              |          |
| LIN-USART0 RX     | 54      | 36              | 10040            | 450              | 324н   | 000FFF24н              | 6, 48    |
| LIN-USART0 TX     | 55      | 37              | ICR19            | 453н             | 320н   | 000FFF20н              | 7, 49    |
| LIN-USART1 RX     | 56      | 38              | IODOO            | 45.4             | 31Сн   | 000FFF1Сн              | 8, 50    |
| LIN-USART1 TX     | 57      | 39              | ICR20            | 454н             | 318н   | 000FFF18н              | 9, 51    |
| LIN-USART2 RX     | 58      | 3A              | 10001            |                  | 314н   | 000FFF14н              | 52       |
| LIN-USART2 TX     | 59      | 3B              | ICR21            | 455н             | 310н   | 000FFF10н              | 53       |
| LIN-USART3 RX     | 60      | 3C              | 10500            | 450              | 30Сн   | 000FFF0Сн              | 54       |
| LIN-USART3 TX     | 61      | 3D              | ICR22            | 456н             | 308н   | 000FFF08н              | 55       |
| System reserved   | 62      | 3E              | 10000 **         | 45-              | 304н   | 000FFF04н              | _        |
| Delayed interrupt | 63      | 3F              | ICR23 *3         | 457н             | 300н   | 000FFF00н              | _        |

| Interrupt source   | Inter<br>num |                  | Interru          | pt level         | Interr           | upt vector             | Resource |
|--------------------|--------------|------------------|------------------|------------------|------------------|------------------------|----------|
| interrupt Source   | Decimal      | Hexa-<br>decimal | Setting register | Register address | Offset           | Default vector address | number*1 |
| System reserved *4 | 64           | 40               | (ICR24)          | (450)            | 2FСн             | 000FFEFCн              | _        |
| System reserved *4 | 65           | 41               | (ICK24)          | (458н)           | 2F8н             | 000FFEF8н              | _        |
| System reserved    | 66           | 42               | ICR25            | 459н             | 2F4н             | 000FFEF4н              | 10, 56   |
| System reserved    | 67           | 43               | ICR25            | 439H             | 2F0н             | 000FFEF0н              | 11, 57   |
| System reserved    | 68           | 44               | ICR26            | 45Ан             | 2ЕСн             | 000FFEEСн              | 12, 58   |
| System reserved    | 69           | 45               | ICR20            | 45AH             | 2Е8н             | 000FFEE8н              | 13, 59   |
| System reserved    | 70           | 46               | ICD27            | 45D.             | 2Е4н             | 000FFEE4н              | 60       |
| System reserved    | 71           | 47               | ICR27            | 45Вн             | 2Е0н             | 000FFEE0н              | 61       |
| System reserved    | 72           | 48               | ICDOO            | 450              | 2DC <sub>H</sub> | 000FFEDCн              | 62       |
| System reserved    | 73           | 49               | ICR28            | 45Сн             | 2D8н             | 000FFED8н              | 63       |
| I <sup>2</sup> C 2 | 74           | 4A               | IODOO            | 450              | 2D4н             | 000FFED4н              | _        |
| I <sup>2</sup> C 3 | 75           | 4B               | ICR29            | 45Dн             | 2D0н             | 000FFED0н              | _        |
| System reserved    | 76           | 4C               | ICR30            | 45Ен             | 2ССн             | 000FFECCн              | 64       |
| System reserved    | 77           | 4D               |                  |                  | 2С8н             | 000FFEC8н              | 65       |
| System reserved    | 78           | 4E               | IODO4            | 455              | 2С4н             | 000FFEC4н              | 66       |
| System reserved    | 79           | 4F               | ICR31            | 45Fн             | 2С0н             | 000FFEC0н              | 67       |
| System reserved    | 80           | 50               | IODOO            | 400              | 2ВСн             | 000FFEBCн              | 68       |
| System reserved    | 81           | 51               | ICR32            | 460н             | 2В8н             | 000FFEB8н              | 69       |
| System reserved    | 82           | 52               | ICDaa            | 404              | 2В4н             | 000FFEB4н              | 70       |
| System reserved    | 83           | 53               | ICR33            | 461н             | 2В0н             | 000FFEB0н              | 71       |
| System reserved    | 84           | 54               | IOD04            | 400              | 2АСн             | 000FFEACн              | 72       |
| System reserved    | 85           | 55               | ICR34            | 462н             | 2А8н             | 000FFEA8н              | 73       |
| System reserved    | 86           | 56               | IODOF            | 400              | 2А4н             | 000FFEA4н              | 74       |
| System reserved    | 87           | 57               | ICR35            | 463н             | 2А0н             | 000FFEA0н              | 75       |
| System reserved    | 88           | 58               | IODOG            | 404              | 29Сн             | 000FFE9Cн              | 76       |
| System reserved    | 89           | 59               | ICR36            | 464н             | 298н             | 000FFE98н              | 77       |
| System reserved    | 90           | 5A               | 10007            | 405              | 294н             | 000FFE94н              | 78       |
| System reserved    | 91           | 5B               | ICR37            | 465н             | 290н             | 000FFE90н              | 79       |
| Input capture 0    | 92           | 5C               | 10500            | 400              | 28Сн             | 000FFE8Сн              | 80       |
| Input capture 1    | 93           | 5D               | ICR38            | 466н             | 288н             | 000FFE88н              | 81       |
| Input capture 2    | 94           | 5E               | 10500            | 40-              | 284н             | 000FFE84н              | 82       |
| Input capture 3    | 95           | 5F               | ICR39            | 467н             | 280н             | 000FFE80н              | 83       |

| Interrupt source          | Inter<br>num |                  | Interru          | pt level         | Interr | upt vector             | Resource |
|---------------------------|--------------|------------------|------------------|------------------|--------|------------------------|----------|
| interrupt source          | Decimal      | Hexa-<br>decimal | Setting register | Register address | Offset | Default vector address | number*1 |
| System reserved           | 96           | 60               | ICR40            | 468н             | 27Сн   | 000FFE7Сн              | 84       |
| System reserved           | 97           | 61               | ICR40            | 400H             | 278н   | 000FFE78н              | 85       |
| System reserved           | 98           | 62               | ICR41            | 469н             | 274н   | 000FFE74н              | 86       |
| System reserved           | 99           | 63               | ICK41            | 409H             | 270н   | 000FFE70н              | 87       |
| Output compare 0          | 100          | 64               | ICD 40           | 46.4             | 26Сн   | 000FFE6Сн              | 88       |
| Output compare 1          | 101          | 65               | ICR42            | 46Ан             | 268н   | 000FFE68н              | 89       |
| Output compare 2          | 102          | 66               | ICD 42           | 4CD              | 264н   | 000FFE64н              | 90       |
| Output compare 3          | 103          | 67               | ICR43            | 46Вн             | 260н   | 000FFE60н              | 91       |
| System reserved           | 104          | 68               | 100.44           | 400              | 25Сн   | 000FFE5Сн              | 92       |
| System reserved           | 105          | 69               | ICR44            | 46Сн             | 258н   | 000FFE58н              | 93       |
| System reserved           | 106          | 6A               | 100.45           | 4CD              | 254н   | 000FFE54н              | 94       |
| System reserved           | 107          | 6B               | ICR45            | 46Dн             | 250н   | 000FFE50н              | 95       |
| System reserved           | 108          | 6C               | ICR46            | 405              | 24Сн   | 000FFE4Cн              | _        |
| Phase Frequency modulator | 109          | 6D               |                  | 46Ен             | 248н   | 000FFE48н              | _        |
| System reserved           | 110          | 6E               | IOD 47 *4        | 405              | 244н   | 000FFE44н              | _        |
| System reserved           | 111          | 6F               | ICR47 *4         | 46F <sub>H</sub> | 240н   | 000FFE40н              | _        |
| PPG0                      | 112          | 70               | 100.40           | 470              | 23Сн   | 000FFE3Сн              | 15, 96   |
| PPG1                      | 113          | 71               | ICR48            | 470н             | 238н   | 000FFE38н              | 97       |
| PPG2                      | 114          | 72               | ICD 40           | 474              | 234н   | 000FFE34н              | 98       |
| PPG3                      | 115          | 73               | ICR49            | 471н             | 230н   | 000FFE30н              | 99       |
| PPG4                      | 116          | 74               | IODEO            | 470              | 22Сн   | 000FFE2Cн              | 100      |
| PPG5                      | 117          | 75               | ICR50            | 472н             | 228н   | 000FFE28н              | 101      |
| PPG6                      | 118          | 76               | ICD54            | 470              | 224н   | 000FFE24н              | 102      |
| PPG7                      | 119          | 77               | ICR51            | 473н             | 220н   | 000FFE20н              | 103      |
| System reserved           | 120          | 78               | IODEO            | 474              | 21Сн   | 000FFE1Сн              | 104      |
| System reserved           | 121          | 79               | ICR52            | 474н             | 218н   | 000FFE18н              | 105      |
| System reserved           | 122          | 7A               | 10050            | 475              | 214н   | 000FFE14н              | 106      |
| System reserved           | 123          | 7B               | ICR53            | 475н             | 210н   | 000FFE10н              | 107      |
| System reserved           | 124          | 7C               | 10054            | 470              | 20Сн   | 000FFE0Сн              | 108      |
| System reserved           | 125          | 7D               | ICR54            | 476н             | 208н   | 000FFE08н              | 109      |
| System reserved           | 126          | 7E               | 10055            | 477              | 204н   | 000FFE04н              | 110      |
| System reserved           | 127          | 7F               | ICR55            | 477н             | 200н   | 000FFE00н              | 111      |

| Interrupt source            | Inter<br>num     | •                | Interru          | pt level         | Interru            | upt vector                   | Resource |
|-----------------------------|------------------|------------------|------------------|------------------|--------------------|------------------------------|----------|
| interrupt source            | Decimal          | Hexa-<br>decimal | Setting register | Register address | Offset             | Default vector address       | number*1 |
| Up/down counter 0           | 128              | 80               | ICR56            | 478н             | 1FCн               | 000FFDFCн                    |          |
| Up/down counter 1           | 129              | 81               | ICKSO            | 47 OH            | 1F8 <sub>H</sub>   | 000FFDF8н                    | _        |
| System reserved             | 130              | 82               | ICR57            | 479н             | 1F4 <sub>H</sub>   | 000FFDF4н                    | _        |
| System reserved             | 131              | 83               | ICR5/            | 479H             | 1F0н               | 000FFDF0н                    |          |
| Real time clock             | 132              | 84               | ICR58            | 47Ан             | 1ЕСн               | 000FFDECн                    |          |
| Calibration unit            | 133              | 85               | ICKS6            | 4/AH             | 1Е8н               | 000FFDE8н                    |          |
| A/D converter 0             | 134              | 86               | ICR59            | 47Вн             | 1Е4н               | 000FFDE4н                    | 14, 112  |
| System reserved             | 135              | 87               | ICKS9            | 47 DH            | 1Е0н               | 000FFDE0н                    |          |
| System reserved             | 136              | 88               | ICR60            | 47Сн             | 1DC <sub>H</sub>   | 000FFDDCн                    |          |
| System reserved             | 137              | 89               | ICROU            | 47CH             | 1D8н               | 000FFDD8н                    |          |
| Low voltage detection       | 138              | 8A               | ICR61            | 47Dн             | 1D4н               | 000FFDD4н                    | _        |
| System reserved             | 139              | 8B               | ICROI            | 47 DH            | 1D0н               | 000FFDD0н                    |          |
| Time-base overflow          | 140              | 8C               | ICR62            | 47Ен             | 1ССн               | 000FFDCCн                    |          |
| PLL clock gear              | 141              | 8D               | ICR02            | 47 EH            | 1С8н               | 000FFDC8н                    | _        |
| DMA controller              | 142              | 8E               | ICR63            | 47F <sub>H</sub> | 1С4н               | 000FFDC4н                    |          |
| Main OSC stability wait     | 143              | 8F               | ICR63            | 4/FH             | 1С0н               | 000FFDC0н                    |          |
| System reserved             | 144              | 90               | _                | _                | 1ВСн               | 000FFDBCн                    |          |
| Used by the INT instruction | 145<br>to<br>255 | 91<br>to<br>FF   | _                | _                | 1В8н<br>to<br>000н | 000FFDB8н<br>to<br>000FFC00н | _        |

<sup>\*1:</sup> The peripheral resources to which RN (Resource Number) is assigned are capable of being DMA transfer activation sources. In addition, RN respectively corresponds to an IS (Input Source) of the DMAC channel control register A(DMACA0 to DMACA4), and the IS (Input Source) can be obtained by representing RN in a binary number and adding "1" to the head of it.

<sup>\*2:</sup> Memory Protection Unit (MPU) support

<sup>\*3:</sup> ICR23 can be switched to ICR47 by setting REALOS compatibility bit (address 0C03H ISO[0]).

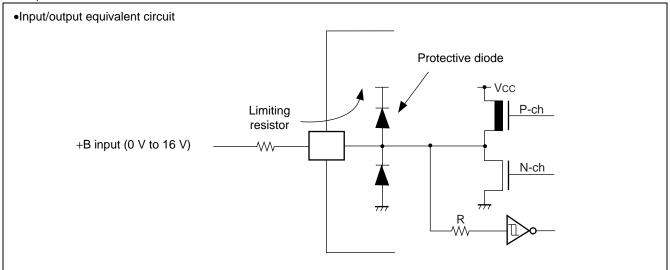
<sup>\*4:</sup> Used by REALOS

#### **■ ELECTRICAL CHARACTERISTICS**

#### 1. Absolute maximum rating

| Parameter                              | Symbol               | Rat       | ting       | Unit | Remarks                |
|----------------------------------------|----------------------|-----------|------------|------|------------------------|
| Parameter                              | Symbol               | Min       | Max        | Unit | Remarks                |
| Power supply voltage*1                 | Vcc                  | Vss - 0.5 | Vss + 6.0  | V    |                        |
| Analog power supply voltage*1          | AVcc                 | Vss - 0.5 | Vss + 6.0  | V    | *2                     |
| Analog power supply voltage*1          | AVRH                 | Vss - 0.5 | Vss + 6.0  | V    | *2                     |
| Input voltage*1                        | Vı                   | Vss - 0.3 | Vcc + 0.3  | V    | *3                     |
| Analog pin input voltage*1             | VIA                  | Vss - 0.3 | AVcc + 0.3 | V    |                        |
| Output voltage*1                       | Vo                   | Vss - 0.3 | Vcc + 0.3  | V    | *3                     |
| Maximum clamp current                  | CLAMP                | - 2.0     | +2.0       | mA   | *4                     |
| Total maximum clamp current            | $\Sigma  I_{CLAMP} $ | _         | 20         | mA   | *4                     |
| "L" level maximum output current       | lol                  | _         | 10         | mA   | *5                     |
| "L" level average output current       | lolav                | _         | 4          | mA   | *6                     |
| "L" level total maximum output current | $\Sigma$ loL         | _         | 100        | mA   |                        |
| "L" level total average output current | $\Sigma$ lolav       | _         | 50         | mA   | *7                     |
| "H" level maximum output current       | Іон                  | _         | - 10       | mA   | *5                     |
| "H" level average output current       | loнаv                | _         | - 4        | mA   | *6                     |
| "H" level total maximum output current | ΣІон                 | _         | - 100      | mA   |                        |
| "H" level total average output current | $\Sigma$ lohav       | _         | - 20       | mA   | *7                     |
| Power consumption                      | Po                   | _         | 700        | mW   |                        |
| Operation temperature                  | т.                   | -40       | +105       | °C   | When using Vcc = 3.3 V |
| Operation temperature                  | Та                   | -40       | +85        | °C   | When using Vcc = 5.0 V |
| Storage temperature                    | Tstg                 | - 55      | + 125      | °C   |                        |

<sup>\*1 :</sup> The parameter is based on  $V_{SS} = AV_{SS} = 0.0 \text{ V}.$ 


<sup>\*2 :</sup> AVcc and AVRH must not exceed Vcc + 0.3 V, for example, at power on. AVcc must not exceed Vcc.

<sup>\*3 :</sup>  $V_1$  and  $V_0$  must not exceed  $V_{CC} + 0.3V$ . However, when the maximum value of the current to the input or the current from the input is limited by using outside parts,  $I_{CLAMP}$  ratings are applied in place of  $V_1$  ratings.

#### (Continued)

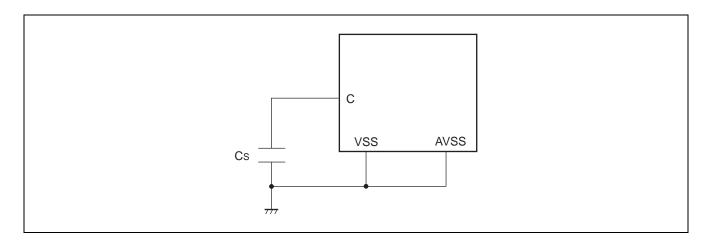
- \*4: Corresponding pins: Pin name P29\_0 to P29\_7, P24\_0 to P24\_7, P22\_0 to P22\_3, P20\_0 to P20\_2, P20\_4 to P20\_6, P15\_0 to P15\_3, P17\_0 to P17\_7, P21\_0 to P21\_2, P21\_4 to P21\_6, P14\_0 to P14\_3
  - Use within recommended operating conditions.
  - Use at DC voltage (current).
  - The + B signal is an input signal exceeding Vcc voltage. The + B signal should always be applied by connecting a limiting resistor between the + B signal and the microcontroller.
  - The value of the limiting resistor should be set so that the current input to the microcontroller pin does not exceed rated values at any time regardless of instantaneously or constantly when the + B signal is input.
  - Note that when the microcontroller drive current is low, such as in the low power consumption modes, the
     + B input potential can increase the potential at the VCC pin via a protective diode, possibly affecting other
     devices.
  - Note that if the + B signal is input when the microcontroller is off (not fixed at 0 V), since the power is supplied through the pin, the microcontroller may operate incompletely.
  - Note that if the + B signal is input at power-on, since the power is supplied through the pin, the power supply voltage may become the voltage at which a power-on reset does not work.
  - Do not leave + B input pins open.
  - Note that analog input/output pins can input the + B signal only at using as a port.
- \*5: Maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.
- \*6 : Average output current is defined as the value of the average current flowing through any one of the corresponding pins for a 100 ms period.
- \*7: Total average output current is defined as the value of the average current flowing through all of the corresponding pins for a 100 ms period.

#### •Sample recommended circuit :



WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

#### 2. Recommended operating conditions


(Vss = AVss = 0.0 V)

| Parameter             | Symbol | Va      | lue                 | Unit | Remarks                                                                                                                                                                              |  |
|-----------------------|--------|---------|---------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Faranteter            | Зуппоп | Min     | Max                 | Onne | Kemarks                                                                                                                                                                              |  |
|                       | Vcc    | 3.0     | 3.6                 | V    | When using Vcc = 3.3 V                                                                                                                                                               |  |
| Power supply voltage  | VCC    | 4.5     | 5.5                 | V    | When using Vcc = 5.0 V                                                                                                                                                               |  |
|                       | AVcc   | 3.0     | 3.6                 | V    | When using Vcc = 3.3 V                                                                                                                                                               |  |
|                       |        | 4.5     | 5.5                 | V    | When using Vcc = 5.0 V                                                                                                                                                               |  |
| Smoothing capacitor   | Cs     |         | .7<br>vithin ± 50%) | μF   | Use a ceramic capacitor or a capacitor that has the similar frequency characteristics. Use a capacitor with a capacitance greater than Cs as the smoothing capacitor on the VCC pin. |  |
|                       | т      | -40     | +105                | °C   | When using Vcc = 3.3 V                                                                                                                                                               |  |
| Operating temperature | TA     | -40 +85 |                     | °C   | When using Vcc = 5.0 V                                                                                                                                                               |  |

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.

> Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their representatives beforehand.



#### 3. DC characteristics

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V/ } 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C} \text{ to } + 105 \,^{\circ}\text{C}/-40 \,^{\circ}\text{C} \text{ to } + 85 \,^{\circ}\text{C})$ 

|                                |                  |                                        |                                                                                                            |           | Value |           | 11::4 | Damaria. |
|--------------------------------|------------------|----------------------------------------|------------------------------------------------------------------------------------------------------------|-----------|-------|-----------|-------|----------|
| Parameter                      | Symbol           | Pin name                               | Condition                                                                                                  | Min       | Тур   | Max       | Unit  | Remarks  |
|                                | Vihs             | Port pin                               | When CMOS hysteresis input type1 are selected                                                              | 0.7 × Vcc | _     | Vcc + 0.3 | V     |          |
|                                | VIHC             | Port pin                               | When CMOS hysteresis input type2 are selected                                                              | 0.8 × Vcc | _     | Vcc + 0.3 | V     |          |
| "H" level<br>input<br>voltage  | VIHA             | Port pin                               | When Automotive inputs are selected                                                                        | 0.8 × Vcc | _     | Vcc + 0.3 | V     |          |
|                                | VIHT             | Port pin                               | When TTL input levels are selected                                                                         | 2.0       | _     | Vcc + 0.3 | V     |          |
|                                | V <sub>IH1</sub> | MD2<br>to<br>MD0                       | CMOS level input                                                                                           | 0.7 × Vcc | _     | Vcc + 0.3 | V     |          |
|                                | V <sub>IH2</sub> | MD3,<br>INITX                          | CMOS hysteresis input                                                                                      | 0.7 × Vcc | _     | Vcc + 0.3 | V     |          |
|                                | VILS             | Port pin                               | When CMOS hysteresis input type1 are selected                                                              | Vss - 0.3 | _     | 0.3 × Vcc | V     |          |
|                                | VILC             | Port pin                               | When CMOS hysteresis input type2 are selected                                                              | Vss - 0.3 | _     | 0.2 × Vcc | V     |          |
| "L" level                      | VILA             | Port pin                               | When Automotive inputs are selected                                                                        | Vss - 0.3 | _     | 0.5 × Vcc | V     |          |
| input<br>voltage               | VILT             | Port pin                               | When TTL input levels are selected                                                                         | Vss - 0.3 |       | 0.8       | V     |          |
|                                | VIL1             | MD2<br>to<br>MD0                       | CMOS level input                                                                                           | Vss - 0.3 | _     | 0.3 × Vcc | V     |          |
|                                | V <sub>IL2</sub> | MD3,<br>INITX                          | CMOS hysteresis input                                                                                      | Vss - 0.3 | _     | 0.3 × Vcc | V     |          |
|                                | V <sub>OH1</sub> | Port pin                               | $V_{CC} = 5.0 \text{ V},$ $I_{OH} = -2.0 \text{ mA/}$ $V_{CC} = 3.3 \text{ V},$ $I_{OH} = -1.0 \text{ mA}$ | Vcc - 0.5 | _     | _         | V     | *1       |
| "H" level<br>output<br>voltage | V <sub>OH2</sub> | I <sup>2</sup> C<br>common<br>port pin | Vcc = 5.0  V, $IoH = -3.0  mA/$ $Vcc = 3.3  V,$ $IoH = -3.0  mA$                                           | Vcc - 0.5 | _     | _         | V     |          |
|                                | Vонз             | Port pin                               | Vcc = 5.0  V, $IoH = -5.0  mA/$ $Vcc = 3.3  V,$ $IoH = -3.0  mA$                                           | Vcc - 0.5 | _     | _         | V     | *1       |

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V/ } 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C} \text{ to } + 105 \,^{\circ}\text{C}/-40 \,^{\circ}\text{C} \text{ to } + 85 \,^{\circ}\text{C})$ 

| Parameter                        | Sym-  | Pin                                         | Condition                                                                                                  |     | Value |     | Unit | Remarks |
|----------------------------------|-------|---------------------------------------------|------------------------------------------------------------------------------------------------------------|-----|-------|-----|------|---------|
| i arameter                       | bol   | name                                        | Condition                                                                                                  | Min | Тур   | Max |      | Nemarks |
| "L" level<br>output<br>voltage   | Vol1  | Port pin                                    | $V_{CC} = 5.0 \text{ V},$ $I_{OH} = -2.0 \text{ mA/}$ $V_{CC} = 3.3 \text{ V},$ $I_{OH} = -1.0 \text{ mA}$ | _   |       | 0.4 | ٧    | *1      |
|                                  | Vol2  | I <sup>2</sup> C<br>com-<br>mon port<br>pin | $V_{CC} = 5.0 \text{ V},$ $I_{OH} = -3.0 \text{ mA/}$ $V_{CC} = 3.3 \text{ V},$ $I_{OH} = -3.0 \text{ mA}$ | _   | _     | 0.4 | V    |         |
|                                  | Volз  | Port pin                                    | $V_{CC} = 5.0 \text{ V},$ $I_{OH} = -5.0 \text{ mA/}$ $V_{CC} = 3.3 \text{ V},$ $I_{OH} = -3.0 \text{ mA}$ | _   | _     | 0.4 | V    | *1      |
| Input leak current               | lι∟   | _                                           | Vcc = AVcc = 5.0 V,<br>Vss < Vı < Vcc                                                                      | -5  | _     | + 5 | μΑ   |         |
| Pull-up<br>resistance<br>value   | Rup   | Port pin                                    | _                                                                                                          | 25  | 50    | 100 | kΩ   |         |
| Pull-down<br>resistance<br>value | Rdown | Port pin                                    | _                                                                                                          | 25  | 50    | 100 | kΩ   |         |

(Continued)

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V} / 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{\text{A}} = -40 \,^{\circ}\text{C} \text{ to } + 105 \,^{\circ}\text{C} / -40 \,^{\circ}\text{C} \text{ to } + 85 \,^{\circ}\text{C})$ 

| Parameter            | Sym-              | Pin                                     | Condition                                   |     | Value |     | Unit | Remarks                                                                                                    |
|----------------------|-------------------|-----------------------------------------|---------------------------------------------|-----|-------|-----|------|------------------------------------------------------------------------------------------------------------|
| Parameter            | bol               | name                                    | Condition                                   | Min | Тур   | Max | Onit | Remarks                                                                                                    |
|                      | Іссз              | VCC                                     | Vcc = 3.3 V CPU core : 80 MHz,              |     | 75    | 102 | mA   | $T_A = -40$ °C to +105 °C                                                                                  |
|                      | Icc5              | VCC                                     | Vcc = 5.0 V CPU core : 80 MHz,              |     | 75    | 102 | mA   | $T_A = -40  ^{\circ}\text{C} \text{ to } +85  ^{\circ}\text{C}$                                            |
|                      | Iccs3             | VCC                                     | Vcc = 3.3 V sleep mode                      |     | 15    | 45  | mA   |                                                                                                            |
|                      | Iccs <sub>5</sub> | VCC                                     | Vcc = 5.0 V sleep mode                      |     | 15    | 45  | mA   |                                                                                                            |
| Power supply current | Істѕз             | VCC                                     | Vcc = 3.3 V stop mode (at using RTC) *3     | _   | 100   | 550 | μА   | T <sub>A</sub> = +25 °C<br>When the CR oscillator is<br>operating and low voltage<br>detection is enabled. |
|                      | Істѕѕ             | VCC                                     | Vcc = 5.0 V stop mode (at using RTC) *3     |     | 200   | 650 | μА   | T <sub>A</sub> = +25 °C<br>When the CR oscillator is<br>operating and low voltage<br>detection is enabled. |
|                      | Ісснз             | VCC                                     | Vcc = 3.3 V stop mode (oscillation stop) *4 |     | 100   | 500 | μΑ   | T <sub>A</sub> = +25 °C<br>When the CR oscillator is<br>stopping and low voltage<br>detection is enabled.  |
|                      | Ісснь             | VCC                                     | Vcc = 5.0 V stop mode (oscillation stop) *4 | l   | 150   | 600 | μΑ   | T <sub>A</sub> = +25 °C<br>When the CR oscillator is<br>stopping and low voltage<br>detection is enabled.  |
|                      | Iccf              | VCC                                     | Flash programming (Write/Erase)             |     | 25    | 50  | mA   | *2                                                                                                         |
| Input capacitance    | Сім               | Except<br>VCC,<br>AVCC,<br>VSS,<br>AVSS | _                                           | _   | 5     | 15  | pF   |                                                                                                            |

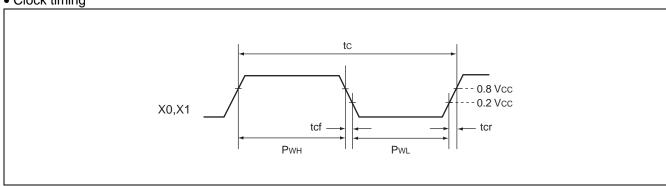
<sup>\*1:</sup> The drive power varies depending on the power supply voltage (3.3 V, 5.0 V).

<sup>\*2:</sup> The power supply current when writing or erasing by executing the automatic algorithm.

<sup>\*3:</sup> When the main clock oscillator is stopped and CR oscillator is operating (using the CR oscillator clock in the RTC) and the low voltage detection is enabled.

<sup>\*4:</sup> When the main clock oscillator is stopped, the CR oscillator is stopped and the low voltage detection is enabled.

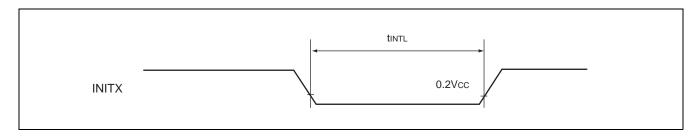
#### 4. AC characteristics


#### (1) Clock timing

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V} / 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } + 125 ^{\circ}\text{C} / -40 ^{\circ}\text{C} \text{ to } + 85 ^{\circ}\text{C})$ 

| Parameter                           | Sym-        | Pin    | Con-   |       | Value |       | Unit  | Remarks                           |
|-------------------------------------|-------------|--------|--------|-------|-------|-------|-------|-----------------------------------|
| Farameter                           | bol         | name   | dition | Min   | Тур   | Max   | Oilit | Remarks                           |
| Clock frequency                     | Fc          | X0, X1 |        | 3.5   | 4     | 16    | MHz   | When using the oscillator circuit |
|                                     | 10          | λ0, λ1 |        | 3.5   | _     | 32    | MHz   | When using an external clock      |
| Clock cycle time                    | <b>t</b> c  | X0, X1 |        | 62.5  | _     | 285.7 | ns    | When using the oscillator circuit |
|                                     | ic          | Λυ, Λ1 |        | 31.25 | _     | 285.7 | ns    | When using an external clock      |
| Internal operation clock frequency  | Fcp         | _      | _      | _     | _     | 80    | MHz   | CPU clock, when using PLL*        |
| lifequency                          | FCPP        |        |        | _     | _     | 40    | MHz   | Peripheral clock                  |
| Internal operation clock cycle time | <b>t</b> cp | _      |        | 12.5  | _     | _     | ns    | CPU clock, when using PLL         |
|                                     | tcpp        |        |        | 25    | _     | _     | ns    | Peripheral clock                  |
| Input clock pulse width             | Pwh,<br>Pwl | X0     |        | 30    | _     | _     | ns    |                                   |
| Input clock rise/fall time          | tcf, tcr    | X0     |        | _     | _     | 5     | ns    |                                   |

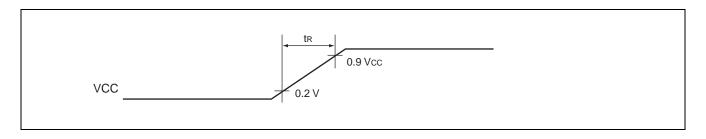
<sup>\*:</sup> When using the clock modulator, set such that the maximum value of the modulated frequency is 96 MHz or less.






#### (2) Reset input

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V} / 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 \,^{\circ}\text{C} \text{ to } + 105 \,^{\circ}\text{C} / -40 \,^{\circ}\text{C} \text{ to } + 85 \,^{\circ}\text{C})$ 


| Parameter                                      | Symbol        | Pin name    | Pin name   Condition | Value                                              | Unit |       |
|------------------------------------------------|---------------|-------------|----------------------|----------------------------------------------------|------|-------|
| Faranietei                                     | Зуппоот       | Fill Hallie | Condition            | Min                                                | Max  | Oilit |
| INITX input time<br>(at power-on or stop mode) | tur           |             |                      | Oscillation stabilization time of oscillator + 2.6 | _    | ms    |
| INITX input time (other than the above)        | tintl INITX — |             | 20                   | _                                                  | μs   |       |



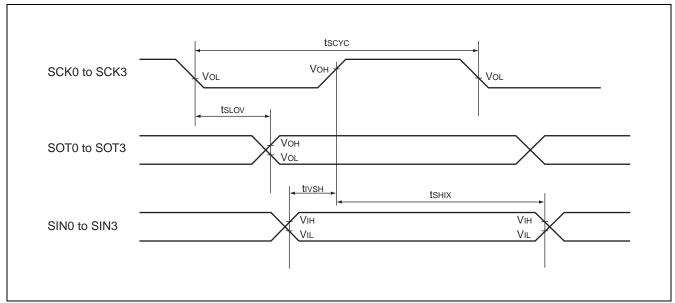
#### (3) Specification for power-on

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V} / 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } + 105 ^{\circ}\text{C} / -40 ^{\circ}\text{C} \text{ to } + 85 ^{\circ}\text{C})$ 

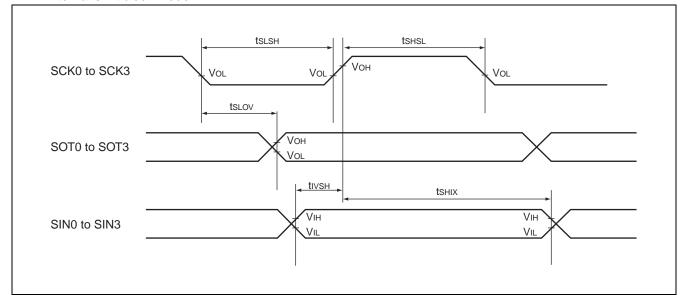
| Parameter                | Symbol     | Pin name | Condition | Valu | Unit      |       |
|--------------------------|------------|----------|-----------|------|-----------|-------|
|                          | Symbol     | Fin name | Condition | Min  | Max       | Offic |
| Power supply rising time | <b>t</b> R | VCC      | _         | 0.1  | 100       | ms    |
| Power supply start time  | _          | _        | _         | 0.2  |           | V     |
| Power supply end time    |            | _        | _         | _    | 0.9 × Vcc | V     |



#### (4) LIN-USART timing


 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V} / 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } + 105 ^{\circ}\text{C} / -40 ^{\circ}\text{C} \text{ to } + 85 ^{\circ}\text{C})$ 

| Parameter                                      | Symbol        | Pin name                      | Condition      | Va                | lue  | Unit |
|------------------------------------------------|---------------|-------------------------------|----------------|-------------------|------|------|
| Parameter                                      | Syllibol      | Pili liaille                  | Condition      | Min               | Max  | Onne |
| Serial clock cycle time                        | <b>t</b> scyc | SCK0 to SCK3                  |                | 8 × tclkp         | _    | ns   |
| $SCK \downarrow \to SOT$ delay time            | tsLOV         | SCK0 to SCK3,<br>SOT0 to SOT3 | Internal shift | - 80              | + 80 | ns   |
| Valid SIN → SCK ↑                              | <b>t</b> ıvsh | SCK0 to SCK3,<br>SIN0 to SIN3 | clock mode     | 100               | _    | ns   |
| $SCK \uparrow \rightarrow valid SIN hold time$ | <b>t</b> shix | SCK0 to SCK3,<br>SIN0 to SIN3 |                | 60                | _    | ns   |
| Serial clock "H" pulse width                   | <b>t</b> shsl | SCK0 to SCK3                  |                | $4 \times t$ CLKP |      | ns   |
| Serial clock "L" pulse width                   | <b>t</b> slsh | SCK0 to SCK3                  |                | $4 \times t$ CLKP |      | ns   |
| $SCK \downarrow \to SOT$ delay time            | tsLOV         | SCK0 to SCK3,<br>SOT0 to SOT3 | External shift | _                 | 150  | ns   |
| Valid SIN → SCK ↑                              | <b>t</b> ıvsh | SCK0 to SCK3,<br>SIN0 to SIN3 | clock mode     | 60                |      | ns   |
| $SCK \uparrow \rightarrow Valid SIN hold time$ | <b>t</b> sнıx | SCK0 to SCK3,<br>SIN0 to SIN3 |                | 60                | _    | ns   |

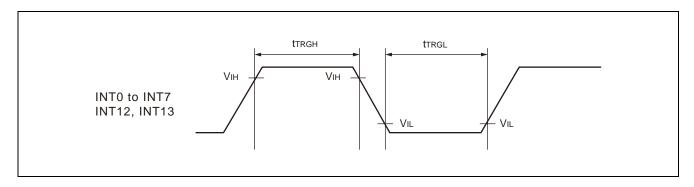

Notes: • Above values are AC characteristics for CLK synchronous mode.

• tclkp is the cycle time of the peripheral clock.

### • Internal shift clock mode



### • External shift clock mode

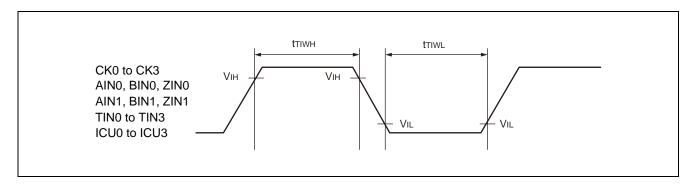



### (5) Trigger input timing

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V} / 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } + 105 ^{\circ}\text{C} / -40 ^{\circ}\text{C} \text{ to } + 85 ^{\circ}\text{C})$ 

| Parameter                            | Symbol                         | Pin name                     | Va        | Unit |       |
|--------------------------------------|--------------------------------|------------------------------|-----------|------|-------|
|                                      | Syllibol                       | riii iiaiiie                 | Min       | Max  | Oilit |
| External interrupt input pulse width | <b>t</b> trgh<br><b>t</b> trgl | INT0 to INT7<br>INT12, INT13 | 4 × tclkp | _    | ns    |

Note: tclkp is the cycle time of the peripheral clock.



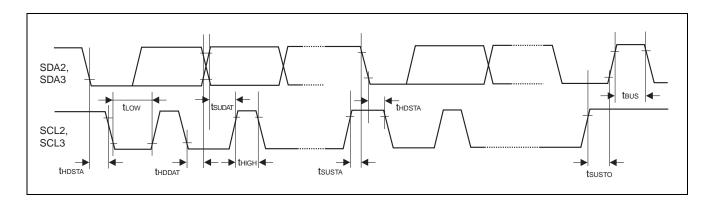

### (6) Timer related resource input timing

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V} / 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } + 105 ^{\circ}\text{C} / -40 ^{\circ}\text{C} \text{ to } + 85 ^{\circ}\text{C})$ 

| Parameter                              | Symbol                                                      | Pin name     | Va        | Unit |       |
|----------------------------------------|-------------------------------------------------------------|--------------|-----------|------|-------|
| raiailletei                            | Symbol Fill flame                                           |              | Min       | Max  | Offic |
| Free-run timer input clock pulse width |                                                             | CK0 to CK3   | 4 × tclkp | _    | ns    |
| Up/down counter input pulse width      | Ise width triwh triwL AINO, AIN BINO, BINO, ZINO, ZINO, ZIN |              | 4 × tclkp | _    | ns    |
| Reload timer input pulse width         |                                                             | TIN0 to TIN3 | 4 × tclkp |      | ns    |
| Input capture input pulse width        |                                                             | ICU0 to ICU3 | 4 × tclkp | _    | ns    |

Note: tolkp is the cycle time of the peripheral clock.




### (7) I2C timing

 $(Vcc = 3.0 \text{ V to } 3.6 \text{ V} / 4.5 \text{ V to } 5.5 \text{ V}, \text{ Vss} = \text{AVss} = 0 \text{ V}, \text{ T}_{A} = -40 ^{\circ}\text{C} \text{ to } + 105 ^{\circ}\text{C} / -40 ^{\circ}\text{C} \text{ to } + 85 ^{\circ}\text{C})$ 

| Parameter                                                                              | Symbol         | Pin name                        | Condition       | Standard Mode |             | Fast Mode *1 |             | Unit  |    |
|----------------------------------------------------------------------------------------|----------------|---------------------------------|-----------------|---------------|-------------|--------------|-------------|-------|----|
| Farameter                                                                              | Symbol         | Fill Hallie                     | Condition       | Min           | Max         | Min          | Max         | Offic |    |
| SCL clock frequency                                                                    | fscL           |                                 | $R = 1 k\Omega$ | 0             | 100         | 0            | 400         | kHz   |    |
| "L" width of the SCL clock                                                             | <b>t</b> Low   |                                 |                 | 4.7           | _           | 1.3          | _           | μs    |    |
| "H" width of the SCL clock                                                             | <b>t</b> HIGH  |                                 |                 | 4.0           | _           | 0.6          | _           | μs    |    |
| Bus free time between STOP and START conditions                                        | <b>t</b> BUS   |                                 |                 | 4.7           | _           | 1.3          | _           | μs    |    |
| SCL ↑→<br>SDA output delay time                                                        | <b>t</b> dldat | SDA2,<br>SDA3,<br>SCL2,<br>SCL3 |                 | _             | 5×<br>tclkp | _            | 5×<br>tclkp | ns    |    |
| Setup time for a repeated START condition SCL ↑→ SDA ↓                                 | <b>t</b> susta |                                 |                 | 4.7           | _           | 0.6          | _           | μs    |    |
| Hold time for a repeated START condition SDA $\downarrow \rightarrow$ SCL $\downarrow$ | <b>t</b> hdsta |                                 | SCL3            |               | 4.0         |              | 0.6         | _     | μs |
| Setup time for STOP condition SCL $\uparrow \rightarrow$ SDA $\uparrow$                | <b>t</b> susto |                                 |                 | 4.0           |             | 0.6          | _           | μs    |    |
| SDA data input hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$        | <b>t</b> hddat |                                 |                 | 2 × tclkp     |             | 2×<br>tclkp  | _           | μs    |    |
| SDA data input setup time SDA $\downarrow \uparrow \rightarrow$ SCL $\uparrow$         | <b>t</b> sudat |                                 |                 | 250           | _           | 100          | _           | ns    |    |

<sup>\*1 :</sup> For use at over 100 kHz, set the peripheral clock to at least 6 MHz.

Note: tclkp is the cycle time of the peripheral clock.



<sup>\*2:</sup> R and C are the pull-up resistance and load capacitance of the SCL and SDA lines.

### 5. Electrical characteristics for A/D converter

(Vcc = 3.0 V to 3.6 V/ 4.5 V to 5.5 V, Vss = AVss = 0 V,  $T_A$  = -40 °C to + 105 °C/-40 °C to + 85 °C)

| Parameter                                      | Symbol           | Pin name   |                  | Value            | Unit             | Remarks |                            |
|------------------------------------------------|------------------|------------|------------------|------------------|------------------|---------|----------------------------|
| Parameter                                      | Syllibol         | riii name  | Min Typ          |                  | Max              |         | Oilit                      |
| Resolution                                     | _                | _          |                  | _                | 10               | bit     |                            |
| Total error*1                                  | _                | _          | _                | _                | ± 3              | LSB     |                            |
| Linearity error*1                              | _                | _          | _                | _                | ± 2.5            | LSB     |                            |
| Differential linearity error*1                 |                  | _          |                  |                  | ± 1.9            | LSB     |                            |
| Zero transition voltage*1                      | Vот              | AN0 to AN7 | AVss-<br>1.5 LSB | AVss-<br>0.5 LSB | AVss-<br>2.5 LSB | V       |                            |
| Full scale transition voltage*1                | V <sub>FST</sub> | AN0 to AN7 | AVRH-<br>3.5 LSB | AVRH-<br>1.5 LSB | AVRH-<br>0.5 LSB | V       |                            |
| Conversion time                                |                  |            | 1 *2             | _                | _                | μs      | Using at 5 V               |
| Conversion time                                | _                | _          | 3 *2             | _                | _                | μs      | Using at 3.3 V             |
| Analog port input current                      | lain             | AN0 to AN7 | _                | _                | 10               | μΑ      |                            |
| Analog input voltage                           | Vain             | AN0 to AN7 | AVss             | _                | AVRH             | V       |                            |
| Reference voltage                              | _                | AVRH       | AVss             | _                | AVcc             | V       |                            |
| Analog power supply current (analog + digital) | la               | AVCC       | _                | 2.4              | 4.7              | mA      | Including reference supply |
| Reference voltage supply current               | lR               | AVRH       |                  | 0.65             | 1.0              | mA      |                            |
| Analog input equivalent capacitance            | Cin              | AN0 to AN7 | _                | _                | 8.5              | pF      |                            |
| Analog input equivalent                        | Rin              | AN0 to AN7 | _                | _                | 2.6              | kΩ      | AVcc ≥ 4.5 V               |
| resistance                                     | IXIII            | AND ID ANT |                  |                  | 12.1             | kΩ      | AVcc ≥ 3.0 V               |
| Output impedance of analog signal source       | Rext             | _          | _                | _                | 4.2              | kΩ      |                            |

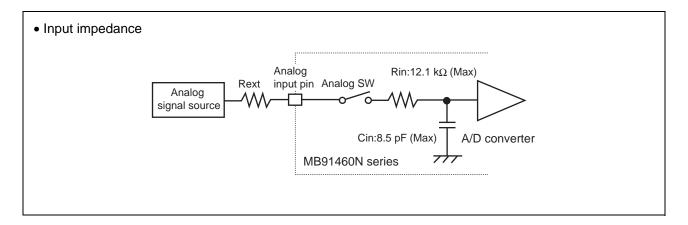
<sup>\*1 :</sup> Measured in the CPU sleep state

<sup>\*2 :</sup> Set no shorter than this time period in the peripheral clock and conversion setting register.

#### Notes on the A/D Converter

The diagram below shows the equivalent circuit of the sampling circuit in the A/D converter.

Apply the output impedance in the external circuit for the analog output under the following conditions.


- The recommended output impedance for the external circuit is 4.2 k $\Omega$  or less.
- If an external capacitor is used, remember to consider the capacitive voltage divider effect due to the external capacitor and the internal capacitor in the chip. Accordingly, an external capacitance several thousand times that of the internal capacitance is recommended.
- The analog voltage sampling period may be too short if the output impedance of the external circuit is high. In this case, select Rext and Tsamp to satisfy the following condition.

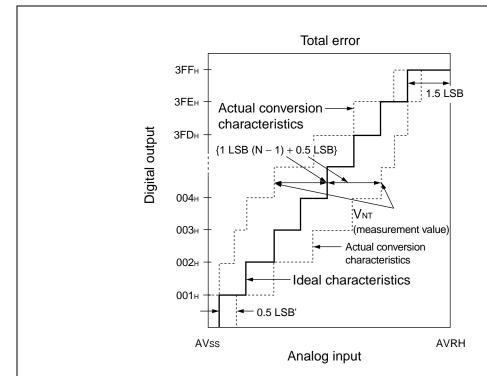
Rext = Tsamp/  $(7 \times Cin)$  - Rin

Rext : Output impedance of the analog signal source

Tsamp : Sampling time

Cin : Equivalent capacitance of analog input Rin : Equivalent resistance of analog input




#### Definition of A/D converter terms

- Resolution
  - Analog variation that is recognizable by an A/D converter.
- · Linearity error

Deviation between actual conversion characteristics and a straight line connecting zero transition point (00 0000 0000  $\leftrightarrow$  00 0000 0001) and full scale transition point (11 1111 1110  $\leftrightarrow$  11 1111 1111).

- · Differential linearity error
  - Deviation of input voltage, which is required for changing output code by 1 LSB, from an ideal value.
- Total error

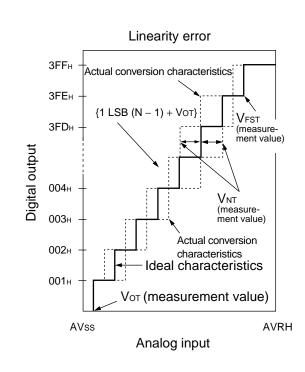
This error indicates the difference between actual and theoretical values, including the zero transition error/full scale transition error/linearity error.

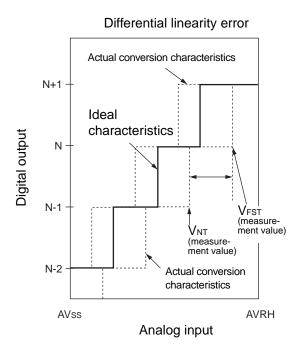


1LSB' (ideal value) = 
$$\frac{AVRH - AV_{SS}}{1024}$$
 [V]

Total error of digital output N = 
$$\frac{V_{NT} - \{1 \text{ LSB'} \times (N-1) + 0.5 \text{ LSB'}\}}{1 \text{ LSB'}}$$

N : A/D converter digital output value


Vor' (ideal value) = AVss + 0.5 LSB' [V]


V<sub>FST</sub>' (ideal value) = AVRH - 1.5 LSB' [V]

 $V_{NT}$ : A voltage at which digital output transits from (N + 1) to N

(Continued)

### (Continued)





Linearity error of digital output N =  $\frac{V_{NT} - \{1LSB \times (N-1) + V_{OT}\}}{1LSB}$ [LSB]

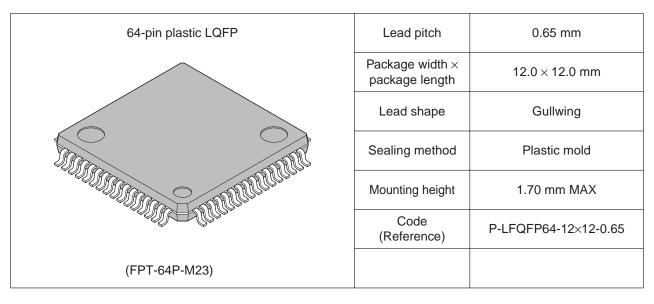
Differential linearity error of digital output N =  $\frac{V(N+1)T - VNT}{1LSB}$  [LSB]

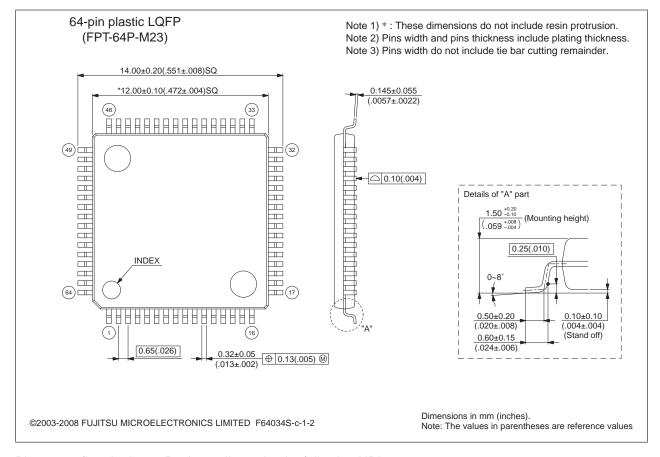
$$1LSB = \frac{V_{FST} - V_{OT}}{1022} [V]$$

N : A/D converter digital output value

 $V_{\text{OT}}$ : A voltage at which digital output transits from 000H to 001H.  $V_{\text{FST}}$ : A voltage at which digital output transits from 3FEH to 3FFH.

• Flash Memory Program/Erase Characteristics


| Parameter                            | Conditions                                                      | Value |     |     | Unit  | Remarks                                          |  |
|--------------------------------------|-----------------------------------------------------------------|-------|-----|-----|-------|--------------------------------------------------|--|
| Parameter                            | Conditions                                                      | Min   | Тур | Max | Ollit | Nemarks                                          |  |
| Sector erase time                    |                                                                 | _     | 0.9 | 3.6 | s     | Excludes programming prior to erasure            |  |
| Chip erase time                      | $T_A = +25 ^{\circ}\text{C}$<br>$V_{CC} = 5.0 ^{\circ}\text{V}$ |       | 9   | _   | s     | Excludes programming prior to erasure            |  |
| Word (16-bit width) programming time |                                                                 |       | 23  | 370 | μs    | Except for the overhead time of the system level |  |
| Program/Erase cycle                  | _                                                               | 10000 | _   | _   | cycle |                                                  |  |
| Flash memory data retention time     | Average<br>T <sub>A</sub> = +85 °C                              | 20    | _   | _   | year  | *                                                |  |


 $<sup>^*</sup>$ : The value is translated high-temperature measurement results of the technology reliability evaluation into average value at + 85 °C.

## **■** ORDERING INFORMATION

| Part number        | Package                              | Remarks           |
|--------------------|--------------------------------------|-------------------|
| MB91F463NCPMC-GSE1 | 64-pin plastic LQFP<br>(FPT-64P-M23) | Lead-free package |

### **■ PACKAGE DIMENSION**





Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/package/en-search/

## ■ MAIN CHANGES IN THIS EDITION

| Page | Section                      | Change Results                                                                           |
|------|------------------------------|------------------------------------------------------------------------------------------|
| _    | _                            | Changed the part number. MB91F463NB → MB91F463NC                                         |
| 13   | ■ I/O CIRCUIT TYPE<br>Type J | Corrected "invertor for clock input (Xout)" to "hysteresis type".                        |
| 37   | ■ MEMORY SPACE               | Added the sector configuration for MB91F463NC in "3. flash memory sector configuration". |
| 81   | ■ ORDERING INFORMATION       | Changed the part number. MB91F463NBPMC → MB91F463NCPMC-GSE1                              |

The vertical lines marked in the left side of the page show the changes.

## **FUJITSU MICROELECTRONICS LIMITED**

Shinjuku Dai-Ichi Seimei Bldg., 7-1, Nishishinjuku 2-chome, Shinjuku-ku, Tokyo 163-0722, Japan

Tel: +81-3-5322-3329 http://jp.fujitsu.com/fml/en/

For further information please contact:

#### **North and South America**

FUJITSU MICROELECTRONICS AMERICA, INC. 1250 E. Arques Avenue, M/S 333
Sunnyvale, CA 94085-5401, U.S.A.
Tel: +1-408-737-5600 Fax: +1-408-737-5999
http://www.fma.fujitsu.com/

#### **Europe**

FUJITSU MICROELECTRONICS EUROPE GmbH Pittlerstrasse 47, 63225 Langen, Germany Tel: +49-6103-690-0 Fax: +49-6103-690-122 http://emea.fujitsu.com/microelectronics/

#### Korea

FUJITSU MICROELECTRONICS KOREA LTD. 206 Kosmo Tower Building, 1002 Daechi-Dong, Gangnam-Gu, Seoul 135-280, Republic of Korea Tel: +82-2-3484-7100 Fax: +82-2-3484-7111 http://kr.fujitsu.com/fmk/

#### **Asia Pacific**

FUJITSU MICROELECTRONICS ASIA PTE. LTD. 151 Lorong Chuan, #05-08 New Tech Park 556741 Singapore Tel: +65-6281-0770 Fax: +65-6281-0220 http://www.fmal.fujitsu.com/

FUJITSU MICROELECTRONICS SHANGHAI CO., LTD. Rm. 3102, Bund Center, No.222 Yan An Road (E), Shanghai 200002, China Tel: +86-21-6146-3688 Fax: +86-21-6335-1605

http://cn.fujitsu.com/fmc/

FUJITSU MICROELECTRONICS PACIFIC ASIA LTD. 10/F., World Commerce Centre, 11 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: +852-2377-0226 Fax: +852-2376-3269

http://cn.fujitsu.com/fmc/en/

Specifications are subject to change without notice. For further information please contact each office.

#### All Rights Reserved.

The contents of this document are subject to change without notice.

Customers are advised to consult with sales representatives before ordering.

The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of FUJITSU MICROELECTRONICS device; FUJITSU MICROELECTRONICS does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information.

FUJITSU MICROELECTRONICS assumes no liability for any damages whatsoever arising out of the use of the information.

Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of FUJITSU MICROELECTRONICS or any third party or does FUJITSU MICROELECTRONICS warrant non-infringement of any third-party's intellectual property right or other right by using such information. FUJITSU MICROELECTRONICS assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.

The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).

Please note that FUJITSU MICROELECTRONICS will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.

Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Exportation/release of any products described in this document may require necessary procedures in accordance with the regulations of the Foreign Exchange and Foreign Trade Control Law of Japan and/or US export control laws.

The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited: Sales Promotion Department