

Ultra-miniature, Highly Sensitive SPDT Relay for Signal Circuits

- Ultra-miniature at $12.5 \times 7.5 \times 10$ mm (L × W × H).
- Wide switching power of 1 mA to 1 A.
- High sensitivity: 150 mW nominal coil power consumption.
- Fully-sealed construction offering environment resistance.
- Conforms to FCC Part 68 requirements for coil to contacts. (1,500 V, $10 \times 160 \ \mu s$)

RoHS Compliant

Model Number Legend

G5V- 1. Number of Poles/Contact Form

1: 1-pole/SPDT (1c)

■Ordering Information

Classification	Enclosure rating	Contact form	Terminal Shape	Model	Rated coil voltage	Minimun packing unit	
Standard		SPDT	PCB terminals	G5V-1	3 VDC		
					5 VDC	25 pag/tubo	
					6 VDC		
		(1c)			9 VDC	25 pcs/tube	
					12 VDC		
					24 VDC		

Note 1. When ordering, add the rated coil voltage to the model number.

Example: G5V-1 3 VDC

2. A special series of bifurcated crossbar contacts models are also available.

■Ratings

Coil

Rated voltage	Rated current (mA)	Coil resistance (Ω)	Must operate voltage (V)	Must release voltage (V) of rated voltage	(V)	Power consumption (mW)
3 VDC	50	60		10% min.	200% at 23°C	Approx. 150
5 VDC	30	167				
6 VDC	25	240	80% max.			
9 VDC	16.7	540	00 /6 max.			
12 VDC	12.5	960				
24 VDC	6.25	3,840				

Note 1. The rated current and coil resistance are measured at a coil temperature of 23°C with a tolerance of ±10%.

2. The operating characteristics are measured at a coil temperature of 23°C.

3. The maximum voltage is the highest voltage that can be imposed on the relay coil.

■Characteristics

Contact resistance *1		100 mΩ max.		
Operate time		5 ms max.		
Release time		5 ms max.		
Insulation resistance *2		1,000 M Ω min. (at 500 VDC between coil and contacts,		
		at 250 VDC between contacts of same polarity.)		
Dielectric Between coil and contacts		1,000 VAC, 50/60 Hz for 1 min		
strength	Between contacts of the same polarity	400 VAC, 50/60 Hz for 1 min	*1	
Vibration resistance	Destruction	10 to 55 to 10 Hz, 1.65 mm single amplitude		
	Destruction	(3.3 mm double amplitude)		
	Malfunction	10 to 55 to 10 Hz, 1.65 mm single amplitude		
	Manufiction	(3.3 mm double amplitude)		
Shock	Destruction	1,000 m/s ²		
resistance	Malfunction	100 m/s ²		
Durability	Mechanical	5,000,000 operations min. (at 36,000 operations/hr)	*3	
	Electrical	100,000 operations min.		
	Liectrical	(under rated load, at 1,800 operations/hr)		
Failure rate (P level) (reference value) *3		1 mA at 5 VDC		
Ambient operating temperature		-40°C to 70°C (with no icing or condensation)		
Ambient operating humidity		5% to 85%		
Weight		Approx. 2 g		

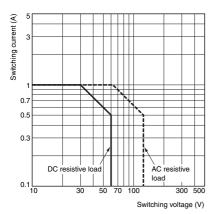
Contacts

Load Item	Resistive load		
Contact type	Single crossbar		
Contact material	Au-alloy + Ag		
Rated load	0.5 A at 125 VAC; 1 A at 24 VDC		
Rated carry current	2 A		
Max. switching voltage	125 VAC, 60 VDC		
Max. switching current	1 A		

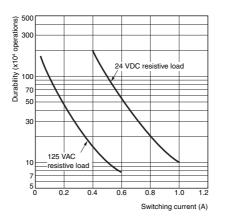
ote: The values here are initial values.

- Measured with 10 mA at 1 VDC with a voltage drop method.
- Measured with a 500 VDC megohmmeter between coil and contacts and a 250 VDC megohmmeter between contacts with the same polarity applied to the same parts as those used for checking the dielectric strength.
- This value was measured at a switching frequency of 120 operations/min and the criterion of contact resistance is 100 Ω .

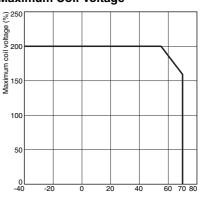
This value may vary depending on the switching frequency and operating environment. Always double-check relay suitability under actual operating conditions.



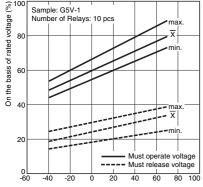
■Application Examples


- Telecommunication equipment
- · Audio-visual products

■Engineering Data

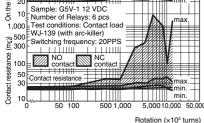

Maximum Switching Capacity

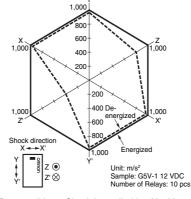
•Durability



•Ambient Temperature vs. Maximum Coil Voltage

Ambient temperature (°C) Note: The maximum coil voltage refers to the maximum value in a varying range of operating power voltage, not a continuous voltage.

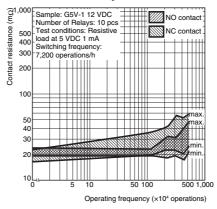

•Ambient Temperature vs. Must Operate or Must Release Voltage



Ambient temperature (°C)

min

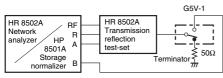
Dial Pulse Test *1 (%) 80 70 voltage 60 rated 50 Must re voltage 40 the basis of 30 20 10 ont



Shock Malfunction

Test conditions: Shock is applied in $\pm X$, $\pm Y$, and $\pm Z$ directions three times each with and without energizing the Relays to check the number of contact malfunctions.

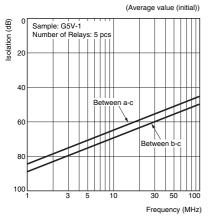
Contact Reliability Test *1, *2



*1. The tests were conducted at an ambient temperature of 23°C.

*2. The contact resistance data are periodically measured reference values and are not values from each monitoring operation. Contact resistance values will vary according to the switching frequency and operating environment, so be sure to check operation under the actual operating conditions before use.

•High-frequency Characteristics


Test Conditions


Terminals which were not being measured were terminated with 50 $\Omega.$ Measuring impedance: 50 Ω

Note: The high-frequency characteristics data were measured using a dedicated circuit board and actual values will vary depending on the usage conditions. Check the characteristics of the actual equipment being used.

High-frequency Characteristics (Isolation) *1, *2

Must Operate and Must Release **Time Distribution *1**

High-frequency Characteristics (Insertion Loss) *1, *2

loss (dB)

nsertion

0.

1.0

1.5

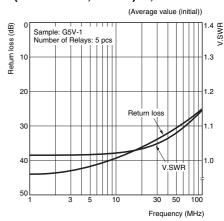
2.0

Samn

G5V-1 12 VDC

Sample: G5V-1 Number of Relays Frequency (MHz)

(Average value (initial))


30 50

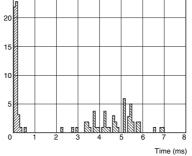
Operating bounce time

Frequency (MHz)

100

High-frequency Characteristics (Return Loss, V.SWR) *1, *2

G 5 V

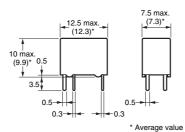

Number of contacts se bounce time Number of Relays 25 50 pcs

s: 5 pc:

10

5

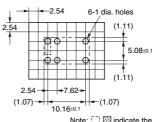
Distribution of Bounce Time *1



- The tests were conducted at an ambient *1. temperature of 23°C.
- High-frequency characteristics depend on *2. the PCB to which the Relay is mounted. Always check these characteristics, including endurance, in the actual machine before use.

Dimensions

G5V-1


Note: Each value has a tolerance of ±0.3 mm.

Approved Standards

UL recognized: 💫 (File No. E41515) CSA certified: (File No. LR31928)

Model	Contact form	Coil ratings	Contact ratings	Number of test operations
G5V-1	SPDT (1c)		1 A, 30 VDC at 40°C 0.3 A, 110 VDC at 40°C	6,000
	(10)		0.5 A, 125 VAC at 40°C	100,000

PCB Mounting Holes (Bottom View)

Terminal Arrangement/

Internal Connections (Bottom View)

(No coil polarity)

Note: [] minicate the product's directional marks.

Precautions

• Please refer to "PCB Relays Common Precautions" for correct use.

Correct Use

Long-term Continuously ON Contacts

Using the Relay in a circuit where the Relay will be ON continuously for long periods (without switching) can lead to unstable contacts, because the heat generated by the coil itself will affect the insulation, causing a film to develop on the contact surfaces. Be sure to use a fail-safe circuit design that provides protection against contact failure or coil burnout.

Relay Handling

When washing the product after soldering the Relay to a PCB, use a water-based solvent or alcohol-based solvent, and keep the solvent temperature to less than 40°C. Do not put the Relay in a cold cleaning bath immediately after soldering.

Application examples provided in this document are for reference only. In actual applications, confirm equipment functions and safety before using the product.
Consult your OMRON representative before using the product under conditions which are not described in the manual or applying the product to nuclear control systems, railroad systems, aviation systems, vehicles, combustion systems, medical equipment, amusement machines, safety equipment, and other systems or equipment that may have a serious influence on lives and property if used improperly. Make sure that the ratings and performance characteristics of the product provide a margin of safety for the system or equipment, and be sure to provide the system or equipment with double safety mechanisms.

Note: Do not use this document to operate the Unit.

OMRON Corporation Electronic and Mechanical Components Company

Contact: www.omron.com/ecb

Cat. No. K048-E1-03 0812(0207)(O)