Board 93 GB SKYPER 42 R

IGBT Driver Core

Board 93 GB SKYPER 42 R

Preliminary Data

Features

- · Two output channels
- · Gold nickel finish
- · Failure management

Typical Applications*

- Adaptor board for SKYPER 42 IGBT drivers in bridge circuits for industrial applications
- · PCB with gold plating
- DC bus up to 1200V

Footnotes

Isolation test voltage with external high voltage diode

The isolation test is not performed as a series test at SEMIKRON

The driver power can be expanded to $50\mu C$ with external boost capacitors

Isolation coordination in compliance with EN50178 PD2

Operating temperature is real ambient temperature around the driver core Degree of protection: IP00

Absolute	Absolute Maximum Ratings				
Symbol	Conditions	Values	Unit		
Vs	Supply voltage primary	16	V		
Iout _{PEAK}	Output peak current	30	Α		
Iout _{AVmax}	Output average current	150	mA		
f _{max}	Max. switching frequency	100	kHz		
V _{CE}	Collector emitter voltage sense across the IGBT	1700	V		
V _{isol IO}	Isolation test voltage input - output (AC, rms, 2s)	4000	V		
V _{isolPD}	Partial discharge extinction voltage, rms, Q _{PD} ≤ 10pC	1500	V		
V _{isol12}	Isolation test voltage output 1 - output 2 (AC, rms, 2s)	1500	V		
R _{Gon min}	Minimum rating for external R _{Gon}	0.8	Ω		
R _{Goff min}	Minimum rating for external R _{Goff}	0.8	Ω		
T _{op}	Operating temperature	-40 85	°C		
T _{stg}	Storage temperature	-40 85	°C		

Characteristics					
Symbol	Conditions	min.	typ.	max.	Unit
					1
V_s	Supply voltage primary side	14.4	15	15.6	V
Vi	Input signal voltage on / off		15/0		V
V _{IT+}	Input treshold voltage HIGH			12.3	V
V _{IT} -	Input threshold voltage (LOW)	4.6			V
V _{G(on)}	Turn on output voltage		15		V
$V_{G(off)}$	Turn off output voltage		-8		V
t _{d(on)IO}	Input-output turn-on propagation time		1.1		μs
t _{d(off)IO}	Input-output turn-on propagation time		1.1		μs

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX

Adaptor board

^{*} The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our staff.

Adaptor Board 93 SKYPER® 42 R

Technical Explanations

Revision 04

This Technical Explanation is valid for the following parts:

part number	type	date code (YYWW)
L5059601	Board 93 GB SKYPER® 42 R	≥ 1241

Related documents:

title
Technical Explanations SKYPER® 42 R
·

Prepared by: Johannes Krapp

Content

Please note:

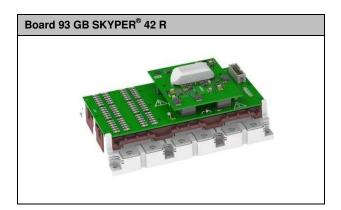
All values in this technical explanation are typical values. Typical values are the average values expected in large quantities and are provided for information purposes only. These values can and do vary in different applications. All operating parameters should be validated by user's technical experts for each application.

Application and Handling Instructions

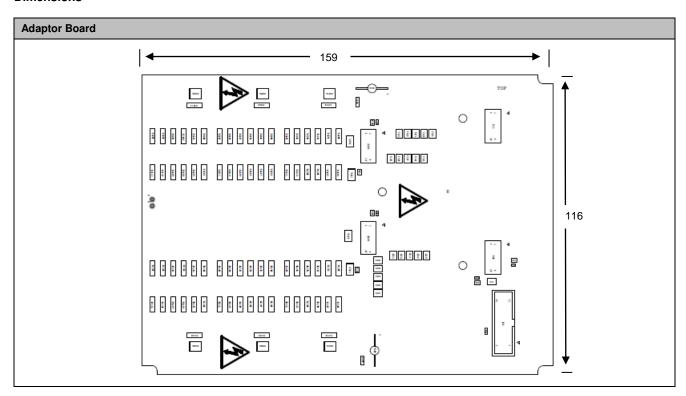
- Please provide for static discharge protection during handling. As long as the hybrid driver is not completely assembled, the input terminals have to be short-circuited. Persons working with devices have to wear a grounded bracelet. Any synthetic floor coverings must not be statically chargeable. Even during transportation the input terminals have to be short-circuited using, for example, conductive rubber. Worktables have to be grounded. The same safety requirements apply to MOSFET- and IGBT-modules.
- Any parasitic inductances within the DC-link have to be minimised. Over-voltages may be absorbed by C- or RCD-snubber networks between main terminals for PLUS and MINUS of the power module.
- When first operating a newly developed circuit, SEMIKRON recommends to apply low collector voltage and load current in the beginning and to increase these values gradually, observing the turn-off behaviour of the free-wheeling diode and the turn-off voltage spikes generated across the IGBT. An oscillographic control will be necessary. Additionally, the case temperature of the module has to be monitored. When the circuit works correctly under rated operation conditions, short-circuit testing may be done, starting again with low collector voltage.
- It is important to feed any errors back to the control circuit and to switch off the device immediately in failure events. Repeated turn-on of the IGBT into a short circuit with a high frequency may destroy the device.
- The inputs of the hybrid driver are sensitive to over-voltage. Voltages higher than V_S +0,3V or below -0,3V may destroy these inputs. Therefore, control signal over-voltages exceeding the above values have to be avoided.
- The connecting leads between hybrid driver and the power module should be as short as possible (max. 20cm), the driver leads should be twisted.

Further application support

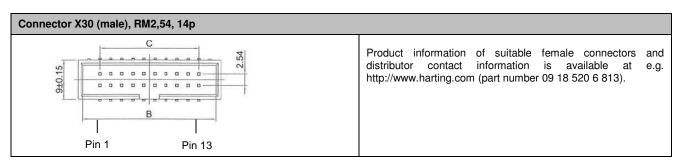
Latest information is available at http://www.semikron.com. For design support please read the SEMIKRON Application Manual Power Modules available at http://www.semikron.com.


General Description

The Board 93 GB SKYPER® 42 is an adaptor board for the IGBT module SKiM® 93 (spring contact). The board is paralleling three channels so the SKiM module can be used in half bridge configuration. The board can be customized allowing adaptation and optimization to the used IGBT module.

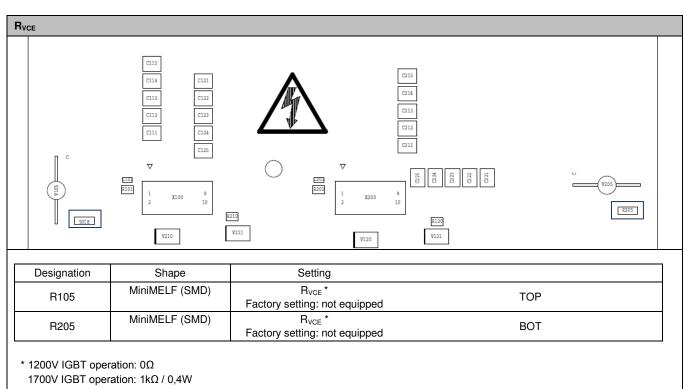

The switching characteristic of the IGBT can be influenced through user settings, e.g. changing turn-on and turn-off speed by variation of R_{Gon} and R_{Goff} . Furthermore, it is possible to adjust the monitoring level and blanking time for the DSCP (see Technical Explanations SKYPER[®] 42 R).

Please note:


This technical explanation is based on the Technical Explanations for SKYPER® 42 R. Please read the Technical Explanations SKYPER® 42 R before using the Adaptor Board.

Dimensions

PIN Array


PIN	Signal	Function	Specification
X30:01	IF_PWR_GND	GND for power supply and GND for digital signals	
X30:02	IF_HB_BOT	Switching signal input (BOTTOM switch)	Digital 15 V; 10 kOhm impedance; LOW = BOT switch off; HIGH = BOT switch on
X30:03	IF_nERROR_OUT	ERROR output	LOW = NO ERROR; open collector output; max. 30V / 15mA (external pull up resistor necessary)
X30:04	IF_HB_TOP	Switching signal input (TOP switch)	Digital 15 V; 10 kOhm impedance; LOW = TOP switch off; HIGH = TOP switch on
X30:05	IF_PWR_GND	GND for power supply and GND for digital signals	
X30:06	reserved		
X30:07	reserved		
X30:08	IF_PWR_15P	Drive power supply	Stabilised +15V ±4%
X30:09	IF_PWR_15P	Drive power supply	Stabilised +15V ±4%
X30:10-14	IF_PWR_GND	GND for power supply and GND for digital signals	

Setting Dynamic Short Circuit Protection

Designation	Shape	Setting	
R101	0805 (SMD)	R _{CE} Factory setting: not equipped	ТО
C101	0603 (SMD)	C _{CE} Factory setting: not equipped	ТО
R202	0805 (SMD)	R _{CE} Factory setting: not equipped	ВС
C201	0603 (SMD)	C _{CE} Factory setting: not equipped	ВО

The Vce formula for the Vce monitoring is described in the technical explanation of SKYPER 42 R.

Collector Series Resistance

Adaptation Gate Resistors

R_{Gon} & R_{Goff}

Des gnation	Shape	Setting	
R1200 – R1205 (parallel connected)	MELF	R _{Gon} Factory setting: not equipped	TOP 1
R1206 – R1211 (parallel connected)	MELF	R _{Goff} Factory setting: not equipped	TOP 1
R1100 – R1105 (parallel connected)	MELF	R _{Gon} Factory setting: not equipped	BOT 1
R1106 – R1111 (parallel connected)	MELF	R _{Goff} Factory setting: not equipped	BOT 1
R2200 - R2205 (parallel connected)	MELF	R _{Gon} Factory setting: not equipped	TOP 2
R2206 - R2211 (parallel connected)	MELF	R _{Goff} Factory setting: not equipped	TOP 2
R2100 – R2105 (parallel connected)	MELF	R _{Gon} Factory setting: not equipped	BOT 2
R2106 – R2111 (parallel connected)	MELF	R _{Goff} Factory setting: not equipped	BOT 2
R3200 – R3205 (parallel connected)	MELF	R _{Gon} Factory setting: not equipped	TOP 3
R3206 – R3211 (parallel connected)	MELF	R _{Goff} Factory setting: not equipped	TOP 3
R3100 – R3105 (parallel connected)	MELF	R _{Gon} Factory setting: not equipped	BOT 3
R3106 – R3111 (parallel connected)	MELF	R _{Goff} Factory setting: not equipped	BOT 3

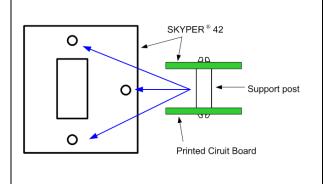
Please consider that not all gate resistors have to be populated. The number and value of the gate resistors have to be calculated according to each application. For details please refer to application note AN 7003 - Gate Resistor. As starting point for evaluation the recommended values of the IGBT data sheet can be taken.

Boost Capacitors

C_{boost15P} & C_{boost8N}

Designation	Pattern Name	Setting	
C111, C112, C113,C114, C115	1210	C _{boos15P} Factory setting: C111, C112: 10μF/25V*	ТОР
C121, C122, C123, C124, C125	1210	C _{boost8N} Factory setting: C124, C125: 10μF/25V *	ТОР
C211, C212, C213, C214, C215	1210	C _{boos15P} Factory setting: C211, C212: 10μF/25V*	вот
C221, C222, C223, C224, C225	1210	C _{boost8N} Factory setting: C224, C225: 10μF/25V *	вот

^{*} output charge pulse: 4μF=1μC. Factory setting: 5μC per channel


Environmental conditions

Please refer to the technical explanation of SKYPER 42 R for the environmental conditions.

Mounting Notes

Driver Core Mounting

- 1. Soldering of components (e.g. $R_{\text{Gon}},\,R_{\text{Goff}},\,\text{etc.})$ on adaptor board.
- 2. Insert driver core into the box connector on adaptor board.
- 3. The connecting leads between board and power module should be as short as possible (max. 20cm), the leads should be twisted.

The connection between driver core and adaptor board should be mechanical reinforced by using support posts. The posts have to be spaced between driver core and adaptor board.

Product information of suitable support posts and distributor contact information is available at e.g. http://www.richco-inc.com.

Please refer to the technical explanation of the SKIM93 module for further mounting instructions.

DISCLAIMER

SEMIKRON reserves the right to make changes without further notice herein to improve reliability, function or design. Information furnished in this document is believed to be accurate and reliable. However, no representation or warranty is given and no liability is assumed with respect to the accuracy or use of such information. SEMIKRON does not assume any liability arising out of the application or use of any product or circuit described herein. Furthermore, this technical information may not be considered as an assurance of component characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability. This document supersedes and replaces all information previously supplied and may be superseded by updates without further notice.

SEMIKRON products are not authorized for use in life support appliances and systems without the express written approval by SEMIKRON.