CXA3197R

10-bit 125MSPS D/A Converter

Description

The CXA3197R is a high-speed D/A converter which can perform multiplexed input of two system 10-bit data.

This IC realizes a maximum conversion rate of 125MSPS. Multiplexed operation is possible by inputing the 1/2 frequency-divided clock or by halving the frequency of the clock internally with the clock frequency divider circuit having the reset pin. The data input is at TTL level, and the clock input and reset input can select either TTL or PECL level according to the application.

Features

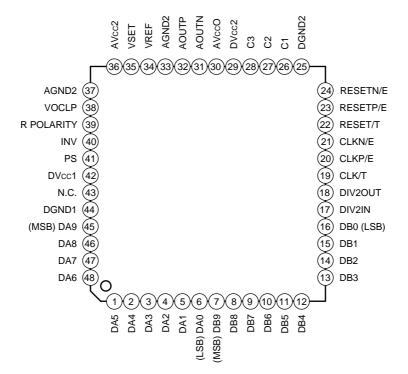
• Maximum conversion rate:

During PECL operation: 125MSPS During TTL operation: 100MSPS

- Resolution: 10 bits
- Low power consumption: 480mW (typ.)
- Data input level: TTL
- Clock, reset input level: TTL and PECL compatible
- 2:1 multiplexed input function
- 1/2 frequency-divided clock output possible by the built-in clock frequency divider circuit
- Voltage output (50 Ω load drive possible)
- Single power supply or ±dual power supply operation
- Reset signal polarity switching function

48 pin LQFP (Plastic)

LEAD TREATMENT: PALLADIUM PLATING


Structure

Bipolar silicon monolithic IC

Applications

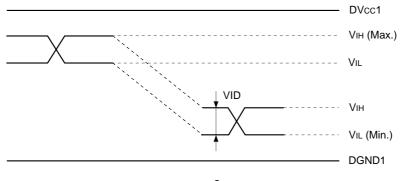
- LCD
- DDS
- HDTV
- Communications (QPSK, QAM)
- Measuring devices

Pin Configuration

Sony reserves the right to change products and specifications without prior notice. This information does not convey any license by any implication or otherwise under any patents or other right. Application circuits shown, if any, are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits.

Absolute Maximum Ratings (Ta = 25°C)

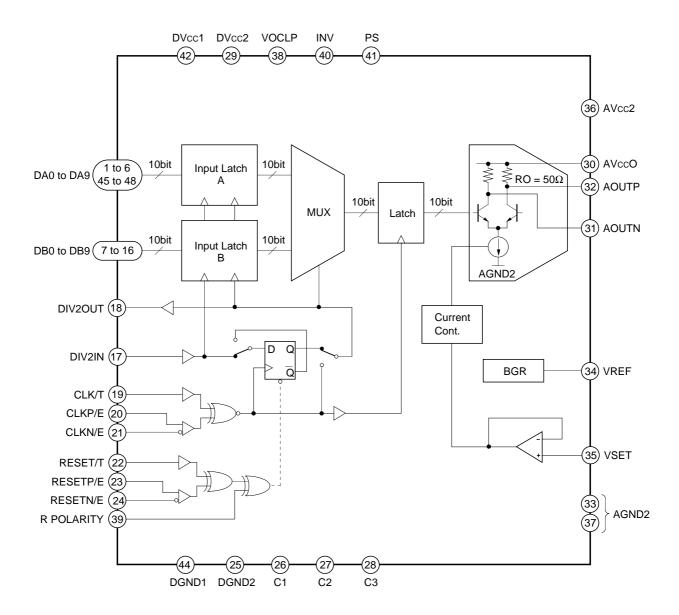
 Supply voltage 	AVccO, AVcc2, DVcc	2 -0.5 to +6.0	V
	AGND2, DGND2	-6.0 to +0.5	V
	DVcc1	-0.5 to +6.0	V
	AVcc2 – AGND2	-0.5 to +6.0	V
	AVccO – AGND2	-0.5 to +6.0	V
	DVcc2 - DGND2	-0.5 to +6.0	V
 Input voltage 			
(Analog)	VSET	AGND2 - 0.5 to AVcc2 + 0.5	V
(Digital)	TTL input pin	DGND1 - 0.5 to DVcc1 + 0.5	V
,	PECL input pin	DGND1 - 0.5 to DVcc1 + 0.5	V
	PS	DGND1 - 0.5 to DVcc1 + 0.5	V
(Others)	VOCLP	DGND1 - 0.5 to DVcc1 + 0.5	V
 Storage temperature 	Tstg	- 65 to +150	${\mathfrak C}$
 Allowable power dissipation 	Pd	1.4	W
(when mounted on a two-lave)	r glass fabric base epox	y board with dimensions of 76mi	$m \times 114$ mm $t = 1.6$ mm)


Recommended Operating Conditions

	[Sing	le power s	supply]	supply]			
 Supply voltage 	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
AVccO	+4.75	+5.0	+5.25	-0.05	0.0	+0.05	V
AVcc2	+4.75	+5.0	+5.25	-0.05	0.0	+0.05	V
AGND2	-0.05	0.0	+0.05	-5.50	-5.0	-4.75	V
DVcc1	+4.75	+5.0	+5.25	+4.75	+5.0	+5.25	V
DGND1	-0.05	0.0	+0.05	-0.05	0.0	+0.05	V
DVcc2	+4.75	+5.0	+5.25	-0.05	0.0	+0.05	V
DCND3	_0.05	0.0	±0.05	_5.50	_5 O	_1 75	\/

 Input voltage (Analog) (Digital) 	VSET TTL input pin	Vih	Min. AGND2 + 0.65 DGND1 + 2.0	Тур.	Max. AGND2 + 1.	Unit 03 V V
(2.9.13.)	<u> </u>	VIL	201121 . 210		DGND1 + 0	.8 V
	PECL input pin	V_{IH}	DVcc1 - 1.05		DVcc1 - 0.	5 V
		V_{IL}	DVcc1 - 3.2		DVcc1 – 1.	4 V
	VID*1		0.5	8.0		V
(Others)	VOCLP		DGND1 + 2.4		DVcc1	V
 ČLK pulse width (for RECL 	. CLK)	tpw1	3.5			ns
		tpw0	3.5			ns
 Maximum conversion rate 	During PECL operation	Ėс	125			MSPS
	During TTL operation	Fc	100			MSPS
 Load resistance 		RL	50	50	≥ 10k	Ω
 Analog output full-scale vo 	ltage					
R∟≥ 10kΩ		VFS	1.5	2.0	2.1	V
$R_L = 50\Omega$		VFS	0.75	1.0	1.05	V
 Operating temperature 		Ta	-20		+75	${\mathcal C}$

^{*1} VID: Input Voltage Differential


PECL input signal switching level

Pin Description

[Symbol]	[Pin No.]	[Description]	Typical voltage level for a single power supply	Typical voltage level for dual power supply
DA0 to DA9	1 to 6, 45 to 48	Side A data input.	TTL	TTL
DB0 to DB9	7 to 16	Side B data input.	TTL	TTL
DIV2IN	17	1/2 frequency-divided clock	input. TTL	TTL
DIV2OUT	18	1/2 frequency-divided clock	output. TTL	TTL
CLK/T	19	TTL clock input.	TTL	TTL
CLKP/E	20	PECL clock input.	PECL	PECL
CLKN/E	21	PECL clock input.	PECL	PECL
RESET/T	22	TTL reset input.	TTL	TTL
RESETP/E	23	PECL reset input.	PECL	PECL
RESETN/E	24	PECL reset input.	PECL	PECL
DGND2	25	Digital ground.	0V	-5V
C1	26	Function setting.	TTL	TTL
C2	27	Function setting.	TTL	TTL
C3	28	Function setting.	TTL	TTL
DVcc2	29	Digital power supply.	5V	0V
AVccO	30	Analog output power supply	y. 5V (typ.)	0V (typ.)
AOUTN	31	Negative analog output.	AVccO - VFS	AVccO - VFs
AOUTP	32	Positive analog output.	AVccO - VFS	AVccO - VFs
AGND2	33	Analog ground.	0V	-5V
VREF	34	Analog reference voltage.	AGND2 + 1.25V	AGND2 + 1.25V
VSET	35	Full-scale adjustment.	AGND2 + 0.65V	AGND2 + 0.65V
			to	to
			AGND2 + 1.03V	AGND2 + 1.03V
AVcc2	36	Analog power supply.	5V	0V
AGND2	37	Analog ground.	0V	-5V
VOCLP	38	TTL High level clamp.	Clamp voltage	Clamp voltage
R POLARITY	39	Reset signal polarity switch	ing. TTL	TTL
INV	40	Analog output inversion.	TTL	TTL
PS	41	Power saving.	TTL	TTL
DVcc1	42	Digital power supply.	5V	5V
N.C.	43	Not connected.	_	_
DGND1	44	Digital ground.	0V	0V

Block Diagram

Pin Description and I/O Pin Equivalent Circuit

Pin No.	Symbol	I/O	Typical voltage level	Equivalent circuit	Description
1 to 6 45 to 48	DA0 to DA9	I	TTL	DVcc1	Side A data input.
7 to 16	DB0 to DB9	I	TTL	1 to 6 45 to 48 7 to 16 DGND1	Side B data input.
17	DIV2IN	I	TTL	DVcc1 (7) DGND1 1.5V	1/2 frequency-divided clock input. Use this pin in MUX.1A or MUX.2 mode. Leave open for other modes.
18	DIV2OUT	0	TTL	DVcc1 W 18 DGND1	1/2 frequency-divided clock output. The 1/2 frequency-divided clock signal (DIV2OUT) is output in MUX.1A mode. Set to high impedance for other modes.
19	CLK/T	I	TTL	DVcc1 (9) DGND1	Clock input. Use this pin when the clock is input at TTL level. At this time, leave Pins 20 and 21 open.

Pin No.	Symbol	I/O	Typical voltage level	Equivalent circuit	Description
20	CLKP/E	ı	PECL	DVcc1	Clock input. Use this pin when the clock is input at PECL level. At this time, leave Pin 19 open. CLKP/E and CLKN/E are complementary and should be used together. CLKP/E complementary
21	CLKN/E	I	PECL		input.
22	RESET/T	I	TTL	DVcc1 22 W 1.5V DGND1	Reset signal input. When multiple CXA3197R are operated at the same time in MUX.1A or MUX.1B mode, the start timing of the internal 1/2 frequency divider circuits should be matched. At this time, the reset signal is used; when the reset signal is at TTL level, Pin 22 is used and Pins 23 and 24 are left
23	RESETP/E	I	PECL	DVcc1	open. When the reset signal is at PECL level, Pins 23 and 24 are used and Pin 22 is left open. The reset signal polarity can be set by Pin 39 (R POLARITY).
24	RESETN/E	I	PECL	DGND1 DGND1	Leave the reset pin open when other modes are used. RESETP/E and RESETN/E are complementary and should be used together.
25	DGND2		Single power supply: GND Dual power supply: –5V		Digital power supply.
26	C1	I	TTL	DVcc1 \$	Function setting.
27 (C2	C2 I TTL (28)			Function setting.
28	С3	I	TTL	DGND1 1.5V	Function setting.

Pin No.	Symbol	I/O	Typical voltage level	Equivalent circuit	Description
29	DVcc2		Single power supply: +5V Dual power supply: GND		Digital power supply.
30	AVccO		Single power supply: +5V Dual power supply: GND		Analog output power supply. The AVccO pin voltage can be varied within the range that satisfies the analog output compliance voltage.
31	AOUTN	0	AVccO – VFS	AVccO RO \$\frac{1}{8}\text{ RO} 31 32 32 AGND2	Negative analog output. The inverse of the positive analog output pin is output. When the positive output is terminated with 50Ω , the inverse output pin should also be terminated with 50Ω even if the inverse output is not used.
32	AOUTP	0	AVccO – VFs		Positive analog output.
33	AGND2		Single power supply: GND Dual power supply: –5V		Analog ground.
34	VREF	0	AGND + 1.25V (Typ.)	AVcc2 BGR 34 AGND2	Reference voltage output.
35	VSET	I	AGND2 + 0.65V to AGND2 + 1.03V	AVcc2 AGND2	Analog output full-scale adjustment.
36	AVcc2		Single power supply: +5V Dual power supply: GND		Analog power supply.

Pin No.	Symbol	I/O	Typical voltage level	Equivalent circuit	Description
37	AGND2		Single power supply: GND Dual power supply: –5V		Analog power supply.
38	VOCLP	I	Clamp voltage	DVcc1 DGND1	TTL output High level clamp. A TTL level signal is output from the DIV2OUT pin in MUX.1A mode. The TTL High level voltage can be clamped to the value approximately equivalent to the voltage applied to this pin. Leave the VOCLP pin open for other modes.
39	R POLARITY	I	TTL	DVcc1 1.5V	Reset signal polarity switching. At High level, the reset polarity is active Low; at Low level, active High.
40	INV	Ι	TTL	DVcc1 1.5V	Analog output polarity inversion. The analog output is inverted at Low level.
41	PS	I	TTL	DVcc1 41 DGND1	Power saving. Power saving mode is activated at Low level. Normally pull up the PS pin to High level as this pin is open Low.
42	DVcc1		5V		Digital power supply.
43	N.C.				Not connected.
44	DGND1		0V		Digital ground.

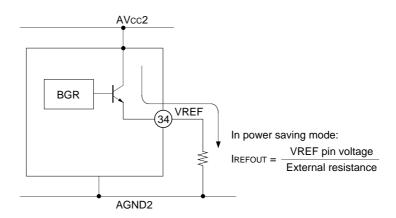
Electrical Characteristics

(DVcc1, DVcc2, AVcc2, AVccO = +5V, DGND1, DGND2 = 0V, Ta = 25°C)

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Resolution	n		10	10	10	bit
Differential linearity error	DLE	VFS = 1000mV *2			-0.85/+0.5 -1.2/+0.5	LSB LSB
Integral linearity error	ILE				±1.2	LSB
Digital input (PECL) Digital input voltage Digital input current Digital input capacitance	VIH VIL IIH IIL	VIH = DVcc1 - 0.8V VIL = DVcc1 - 1.6V	DVcc1 - 1.05 DVcc1 - 3.2 0 -30		DVcc1 - 0.5 DVcc1 - 1.4 20 0 5	V V µA µA pF
Digital input (TTL) Digital input voltage Threshold voltage	Vih Vil Vth		2	1.5	0.8	V V
Digital input current Digital input capacitance	IIH IIL	VIH = 3.5V VIL = 0.2V	–1 –2	1.5	1 0 5	μΑ μΑ pF
Digital output (TTL) Digital output voltage Leak current at high impedance	Voh Vol	Iон = −2.0mA Iо∟ = 1.0mA When Vo = 5V	2.4 10		0.5 100	V V µA
Digital output rise time Digital output fall time	Tr Tf	When Vo = 0V 0.8 to 2.4V (C _L = 10pF) 0.8 to 2.4V (C _L = 10pF)	-1 1 0.6		1 1.5 1.2	μΑ ns ns
PS pin input (PS) PS pin input voltage PS pin input current	VIH VIL IIH	VIH = 3.5V VIL = 0.2V	2 1 –1		0.8 100 0	V V μΑ μΑ
Clamp pin (VOCLP) VOCLP pin input current	IVOCLP IVOCLP	Voclp = DVcc1 Voclp = 2.4V	0 –60		5 –10	μA μA
Analog output characteristics Output full-scale voltage $: R_L \geq 10k\Omega$ $: R_L = 50\Omega$ Output zero offset voltage $: R_L \geq 10k\Omega$	VFS VFS VOF	} VSET = AGND2 + 937.5mV	1.5 0.75	2	2.1 1.05	V V mV
: RL = 50Ω Analog output resistance Analog output capacitance Absolute amplitude error Absolute amplitude error	Vor Ro Co EG	VSET = AGND2 + 937.5mV	0 -4.0	50 10	4.0	mV Ω pF % of F.S.
temperature characteristics Analog output rise time Analog output fall time Settling time Glitch energy	Tcg Tr Tf tset GE	VFS = 1000mV at 25°C When RL = 50Ω , VFS = 1V,10 - 90%	0.85 0.75		60 1.05 0.85 3.5 5	ns ns ns ns pV⋅s
Compliance voltage	Voc	Mesured to DVcc2 *3	-2.1		1.5	V

Item	Symbol	Conditions	Min.	Тур.	Max.	Unit
Reference/control amplifier characteristics VREF pin output voltage VREF pin output voltage in PS mode	Vref Vref	} IREFOUT = 1mA			AGND2 + 1.32 AGND2 + 1.32	
VREF voltage drift coefficient					250	ppm/℃
VSET pin input current Multiplying bandwidth	ISET	100mVp-p, SIN, at –3dB	-5 50		0	μA MHz
Current consumption	Icc	Total current consumption	63	96	129	mA
	DIcc1	Dicc1 current consumption	7	15.5	24	mA
	DIcc2	DIcc2 current consumption	13	19	25	mA
	Alcc2	Alcc2 current	6	8.5	11	mA
	AlccO	consumption AlccO current consumption	37	53	69	mA
Current consumption in PS mode *4	Icc	Total current consumption in PS mode		0.432	4	mA
	Dlcc1	DIcc1 current consumption in PS mode		0.38	1.5	mA
	Dlcc2	DIcc2 current consumption in PS mode		0.001	0.2	mA
	Alcc2	Alcc2 current consumption in PS mode		0.05	0.3	mA
	AlccO	AlccO current consumption in PS mode		0.001	2	mA

^{*2 64-}step D.L.E. This indicates the D.L.E. when the INV pin is High and the data input code changes between:


at the AOUTP side output or between:

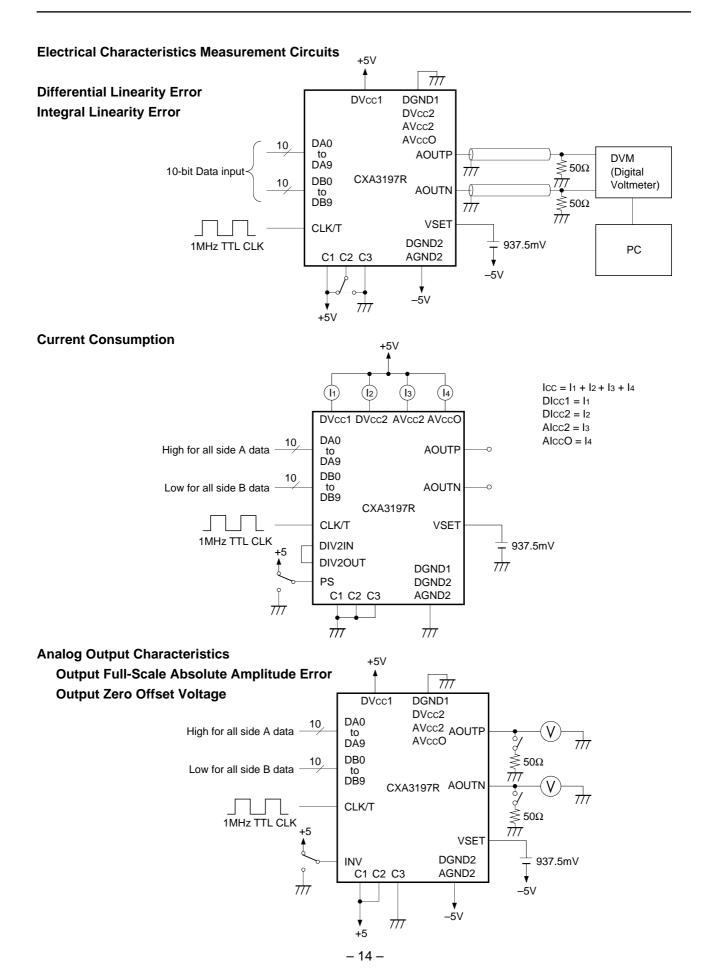
at the AOUTN side output.

Voc (min) =
$$(AVccO - VFS) - DVcc2 \ge -2.1V$$

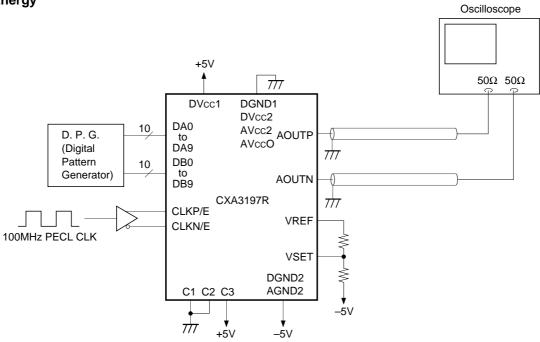
Voc (max) = $(AVccO - VOF) - DVcc2 \le 1.5V$

^{*3} When using the analog output within the compliance voltage range, set AVccO so that it satisfies the following equations.

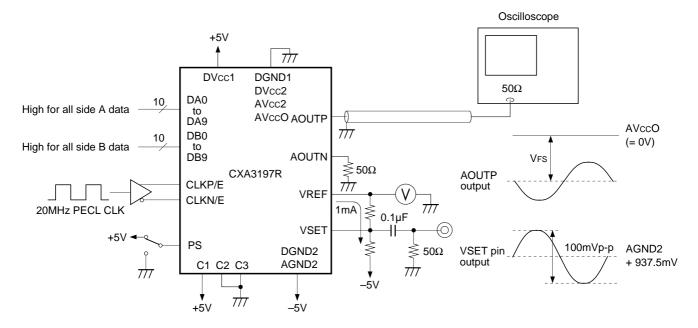
*4 The current consumption in power saving mode does not include the VREF pin output current. When grounding the VREF pin to the AGND2 level using external resistance, a voltage of 1.18 to 1.32V is generated at the VREF pin even in power saving mode. Therefore, the current indicated by the following equation flows from the AVcc2 pin to the VREF pin. This value must be added to obtain the actual current consumption in power saving mode.

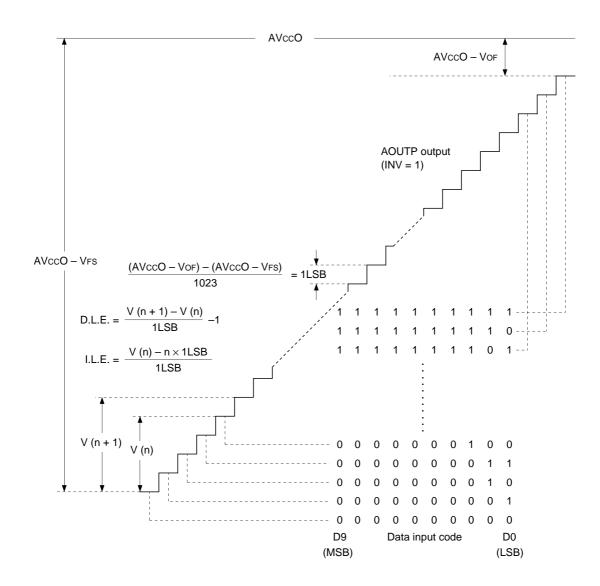


	CLK signal level					PEC	L		TTL			L		
			PECL				TTL		TTL					
		Item	Symbol	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
		Maximum conversion rate	FC		125			100			125			MSPS
		Clock High pulse width	Tpw1		3.5			4.5			3.5			ns
		Clock Low pulse width	Tpw0		3.5			3.0			3.5			ns
		Reset signal setup time	ts-rst		0			1.0			4.0			ns
	ope	Reset signal hold time	th-rst		1.0			3.0			0			ns
	4 mc	DIV2OUT output delay	td-DIV	CL = 10pF	5.5	6.5	8	8.0	9.5	12.0	5.5	6.5	8	ns
	MUX.1A mode	DIV2OUT to DIV2IN maximum delay time	2T-tm				2T – 7			2T – 7			2T – 7	ns
	MU	Data input setup time	ts		1.0			1.0			1.0			ns
stics		Data input hold time	th		5.0			5.0			5.0			ns
Switching characteristics		Analog output pipeline delay	tpd (A)			4			4			4		CLK
arac		Arialog output pipeline delay	tpd (B)			5			5			5		OLIX
g ch		Analog output delay	tdo		5.0	5.5	6.0	6.5	7.5	8.5	5.0	5.5	6.0	ns
chin		Maximum conversion rate	FC		125			100			125			MSPS
Swit		Clock High pulse width	Tpw1		3.5			4.5			3.5			ns
		Clock Low pulse width	Tpw0		3.5			3.0			3.5			ns
	mode	Reset signal setup time	ts-rst		0			1.0			4.0			ns
	3 mc	Reset signal hold time	th-rst		1.0			3.0			0			ns
	MUX.1B	Data input setup time	ts		1.0			1.0			1.0			ns
	MU	Data input hold time	th		4.0			6.0			4.0			ns
		Analog output pipaling dalay	tpd (A)			2			2			2		CLIV
		Analog output pipeline delay	tpd (B)			3			3			3		CLK
		Analog output delay	tdo		5.0	5.5	6.0	6.5	7.5	8.5	5.0	5.5	6.0	ns


_	
\cdot	
×	
욧	
ω	
<u>.</u>	
~	
ᄁ	

			CLK	PECL			TTL					
			Reset signal level		*4			*4				
		Item	Symbol	Conditions	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	
		Maximum conversion rate	FC		125			100			MSPS	
		Clock High pulse width	Tpw1		3.5			4.5			ns	
		Clock Low pulse width	Tpw0		3.5			3.0			ns	
	de	DIV2IN setup time	ts-DIV		4.5			2.0			ns	
	mode	DIV2IN hold time	th-DIV		0			3.5			ns	
	MUX.2	Data input setup time	ts		1.0			1.0			ns	
	X	Data input hold time	th		5.0			5.0			ns	
stics	-	Analog output pipeline delay	tpd (A)			2			2		CLK	
teris		Analog output pipeline delay	tpd (B)			3			3		CLN	
arac	-	Analog output delay	tdo		5.0	5.5	6.0	6.5	7.5	8.5	ns	
Switching characteristics		Maximum conversion rate	FC		125			100			MSPS	
	-	Clock High pulse width	Tpw1		3.5			4.5			ns	
	SELE.A, SELE.B modes	Clock Low pulse width	Tpw0		3.5			3.0			ns	
		C2 signal setup time	ts-C2		1.0			1.0			ns	
		C2 signal hold time	th-C2		2.5			3.5			ns	
		Data input setup time	ts		1.0			1.5			ns	
		Data input hold time	th		2.0			3.5			ns	
		Analas autorit ninalina dalar	tpd (A)			1			1		CLK	
		Analog output pipeline delay	tpd (B)			1			1			
	-	Analog output delay	tdo		5.0	5.5	6.0	6.5	7.5	8.5	ns	


^{*4} The reset signal is not input in MUX.2, SELE.A or SELE.B mode.



Analog Output Rise Time Analog Output Fall Time Settling Time Glitch Energy

Reference/Control Amplifier Characteristics
VREF Pin Output Voltage
VREF Pin Output Voltage in Power Saving Mode
Multiplying Bandwidth

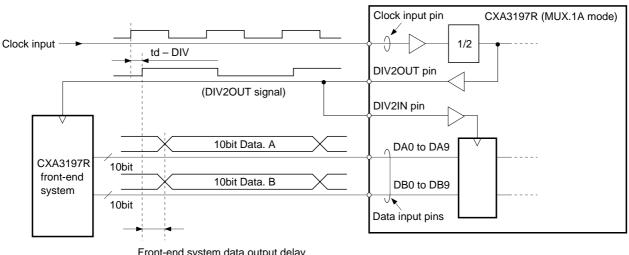
	Data inp	Analog output level				
INV	= 1	IN\	/ = 0			
(MSB) D9	(LSB) D0	(MSB) D9	(LSB) D0	AOUTP	AOUTN	
11111			000000	AVccO – Vor :	AVccO – Vrs :	
00000			11111	: AVccO – VFS	: AVccO –	

Table 1. I/O Correspondence Table

Description of Operation

The CXA3197R has four types of operation modes to support various applications. The operation mode is set by switching the function setting pins (C1, C2 and C3).

Operation Mode Table

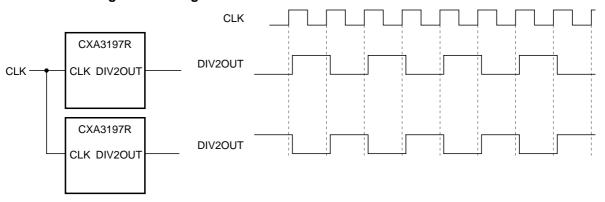

Mode	C1	C2	СЗ	CLK IN (MSPS)	Data IN (Mbps)	AOUT (Mbps)	DIV2OUT pin	Description of operation		
MUX.1A	0	0	0				Outputs CLK/2 at TTL level	MUX operation by the internal CLK/2		
MUX.1B	0	0	1		62.5		High impedance	MUX operation by the internal CLK/2		
MUX.2	0	1	0	125		125	High impedance	MUX operation by DIV2IN		
SELE.A	1	0	0				High impedance	D/A conversion of side A data input		
SELE.B	1	1	0		125		High impedance	D/A conversion of side B data input		

The CXA3197R can input data divided into two systems: A (DA0 to DA9) and B (DB0 to DB9), internally multiplex the data, and output it as an analog signal, making it possible to halve the data rate. This lets the CXA3197R support the TTL data input level in contrast to the ECL data input level for conventional high-speed D/A converters. The clock signal and reset signal input levels can be selected from either TTL or PECL according to the application. (However, setting both signals to either TTL or PECL input level is recommended.)

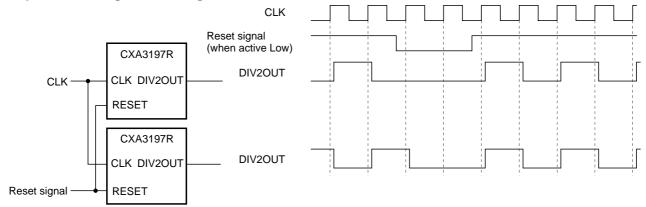
1. MUX.1A mode

Set C1, C2 and C3 all Low for this mode.

In MUX.1A mode, the frequency of the clock input from the clock input pin is halved internally, and the 1/2 frequency-divided signal is output at TTL level from the DIV2OUT pin. Data synchronized with the DIV2OUT signal (the signal output from the DIV2OUT pin) can be obtained by operating the CXA3197R front-end system with the DIV2OUT signal. The timing at which the data output delay of the CXA3197R front-end system matches with the hold time during CXA3197R data input can be easily set by inputting this synchronized data to the data input pins and the DIV2OUT signal to the DIV2IN pin. The data can be divided and input to two systems: A (DA0 to DA9) and B (DB0 to DB9), internally multiplexed, and extracted as analog output.

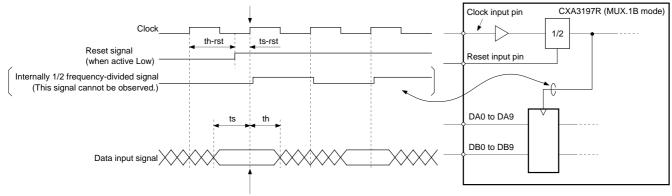


Front-end system data output delay


CXA3197R data input hold time

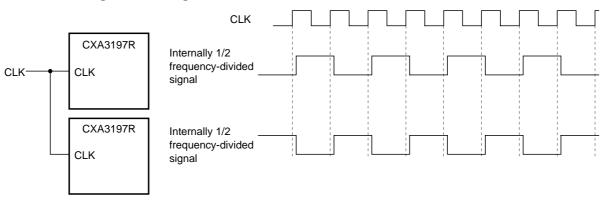
When using the multiple CXA3197R in MUX.1A mode, the start timing of the 1/2 frequency-divided clocks becomes out of phase, producing operation such as that shown in the example below. As a countermeasure, the MUX.1A mode has a function that matches the start timing of the 1/2 frequency-divided clocks with the reset signal. When using a PECL level reset signal, input the reset signal to Pins 23 and 24 (RESETP/E, RESETN/E) and leave Pin 22 (RESET/T) open. When using a TTL level reset signal, input the reset signal to Pin 22 (RESET/T) and leave Pins 23 and 24 (RESETP/E, RESETN/E) open. The reset polarity can be switched by the R POLARITY pin (Pin 39). When the R POLARITY pin is High or open, reset is active Low; when Low, reset is active High. See the timing chart for the detailed timing.

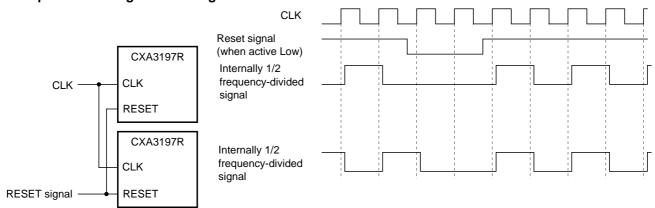
Example when not using the reset signal


Example when using the reset signal

2. MUX.1B mode

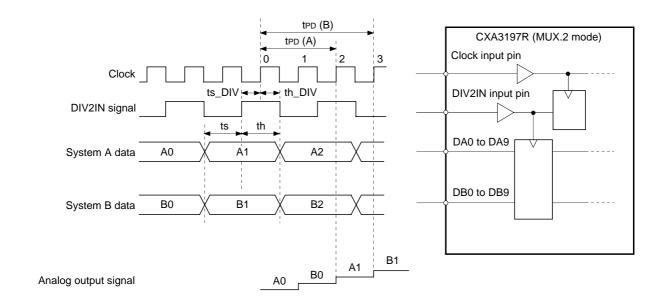
Set C1 and C2 Low and C3 High for this mode.


In MUX.1B mode, the frequency of the clock input from the clock input pin is halved internally, and the data is loaded by this 1/2 frequency-divided signal. The 1/2 frequency-divided signal cannot be observed at this time, so the data is actually loaded by observing the clock and reset signals to estimate the rising edge of the internally 1/2 frequency-divided signal. The data can be divided and input to two systems: A (DA0 to DA9) and B (DB0 to DB9). The data is internally multiplexed, then the system A data is output as an analog signal with a 2-clock pipeline delay, and the system B data as an analog signal with a 3-clock pipeline delay after loading by the clock.


After the reset is released, the internal 1/2 frequency-divided signal commences at the first clock edge, so be sure to input the data in a manner that satisfies the setup time (ts) and hold time (th) with respect to this clock edge.

Like MUX.1A mode, when using the multiple CXA3197R in MUX.1B mode, the start timing of the 1/2 frequency-divided clocks becomes out of phase, producing operation such as that shown in the example below. As a countermeasure, the MUX.1B mode also has a function that matches the start timing of the 1/2 frequency-divided clocks with the reset signal. When using a PECL level reset signal, input the reset signal to Pins 23 and 24 (RESETP/E, RESETN/E) and leave Pin 22 (RESET/T) open. When using a TTL level reset signal, input the reset signal to Pin 22 (RESET/T) and leave Pins 23 and 24 (RESETP/E, RESETN/E) open. The reset polarity can be switched by the R POLARITY pin (Pin 39). When the R POLARITY pin is High or open, reset is active Low; when Low, reset is active High. See the timing chart for the detailed timing.

Example when not using the reset signal


Example when using the reset signal

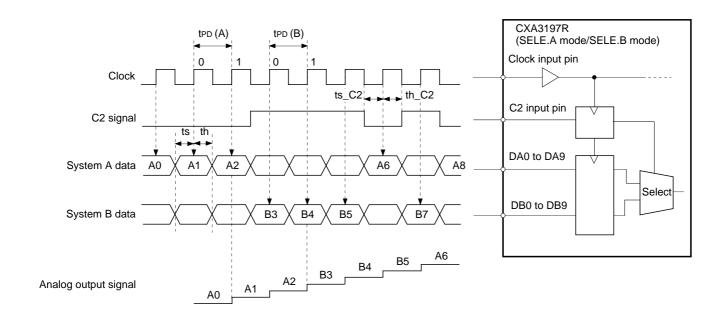
3. MUX.2 mode

Set C1 and C3 Low and C2 High for this mode.

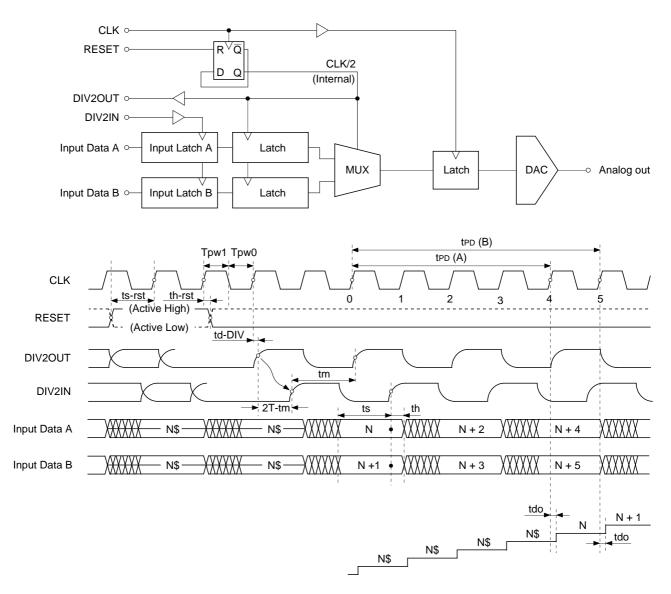
In MUX.2 mode, the clock is input to the clock input pin, and the signal with a cycle half that of the clock (hereafter, DIV2IN signal) is input to the DIV2IN pin at TTL level. The DIV2IN signal is internally latched by the clock, so consideration must be given to the setup time (ts_DIV) and hold time (th_DIV) with respect to the clock. In addition, the data is loaded by the DIV2IN signal, so consideration must also be given to the setup time (ts) and hold time (th) with respect to the DIV2IN signal. The data can be divided and input to two systems: A (DA0 to DA9) and B (DB0 to DB9). The data is internally multiplexed, then the system A data is output as an analog signal with a 2-clock pipeline delay, and the system B data as an analog signal with a 3-clock pipeline delay from the clock that loads the DIV2IN signal. See the timing chart for the detailed timing.

4. SELE.A mode and SELE.B mode

Set C1 High and C2 and C3 Low for SELE.A mode.

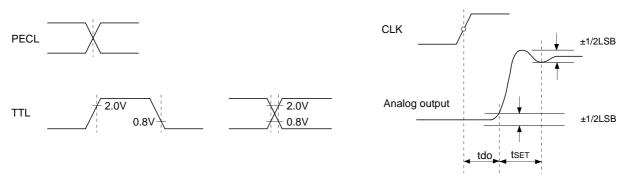

In SELE.A mode, the clock is input to the clock input pin, and the data is input to the system A (DA0 to DA9) data input pins.

Set C1 and C2 High and C3 Low for SELE.B mode.

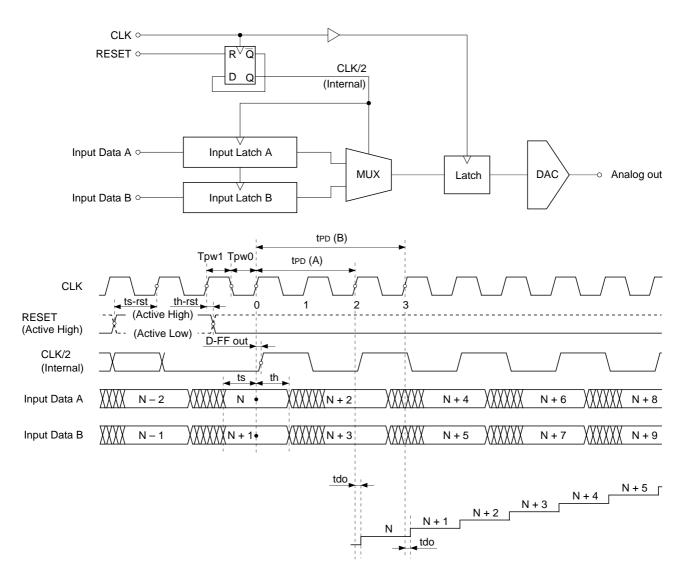

In SELE.B mode, the clock is input to the clock input pin, and the data is input to the system B (DB0 to DB9) data input pins.

In either mode, consideration must be given to the setup time (ts) and hold time (th) with respect to the clock. Also, the data is output as an analog signal with a 1-clock pipeline delay after loading by the clock.

Switching between SELE.A mode and SELE.B mode is done by switching the C2 pin between High and Low levels. Also, the mode can be switched at high speed in sync with the clock by inputting the switching signal (C2 signal) to the C2 pin. The C2 signal is internally latched by the clock, so consideration must be given to the setup time (ts_C2) and hold time (th_C2) with respect to the clock. See the timing chart for the detailed timing.

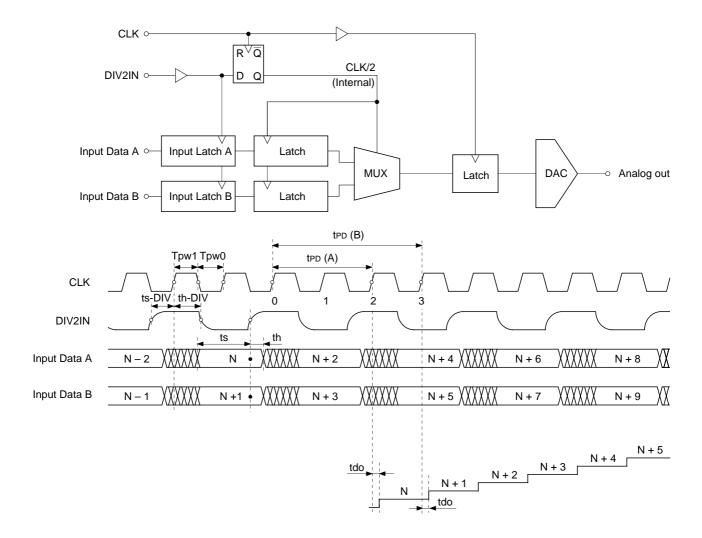


Block Diagram & Timing Chart (MUX.1A Mode)

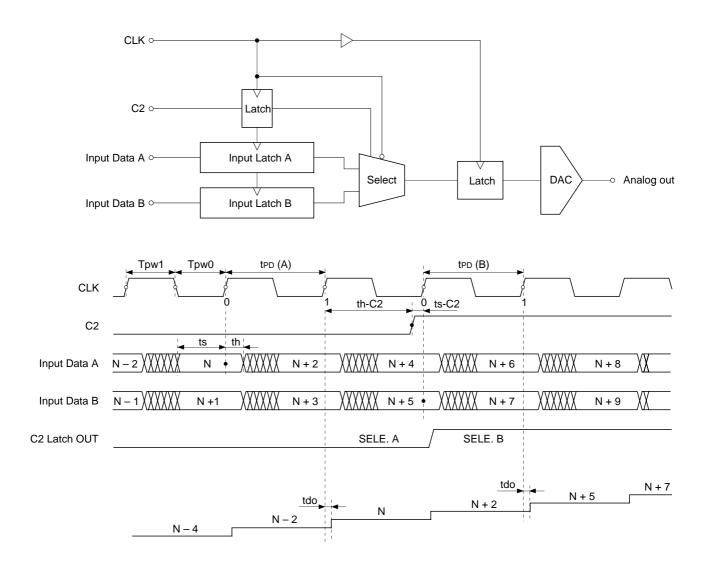


In MUX.1A mode, Data A and Data B are internally multiplexed and then the resulting signal can be analog output. The frequency of the clock is halved by the built-in clock frequency divider circuit and the CLK/2 can be output at TTL level (DIV2OUT). CLK/2 can be reset by the reset signal.

(Timing judgment points)



Block Diagram & Timing Chart (MUX.1B Mode)


In MUX.1B mode, Data A and Data B are internally multiplexed and then the resulting signal can be analog output. The frequency of the clock is halved by the built-in clock frequency divider circuit. CLK/2 can be reset by the reset signal.

Block Diagram & Timing Chart (MUX.2 Mode)

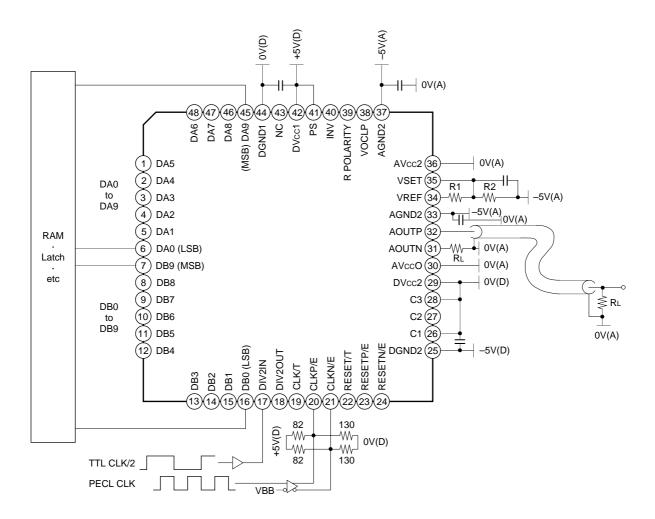
In MUX.2 mode, the 1/2 frequency-divided clock signal (DIV2IN) and Data A and Data B, which are synchronized with DIV2IN, are provided simultaneously. These signals are internally multiplexed and the resulting signal can be analog output.

Block Diagram & Timing Chart (SELE.A, SELE.B Mode)

In SELE.A and SELE.B modes, input Data A or Data B is selected and the selected data can be analog output. When C1 = 1 and C3 = 0, Data A is selected for C2 = 0, and Data B is selected for C2 = 1.

Application Circuit

The circuit shown below is the basic circuit when the analog output is terminated with external resistance of 50Ω for operation with dual ± 5 V power supply in MUX.2 mode. The analog output uses AVccO as the reference. The analog output full-scale voltage VFs is obtained with the following equation.


$$VFS = \frac{VSET}{375} \times (15 + \frac{63}{64}) \times R$$

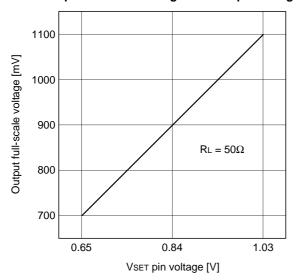
R = Ro//RL

Ro: Output impedance (= 50Ω)

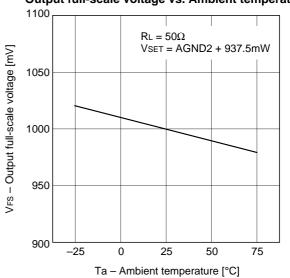
RL: External termination resistance

Here, VSET =
$$\frac{R2}{R1 + R2}$$
 VREF
$$(VREF \approx 1.2V)$$

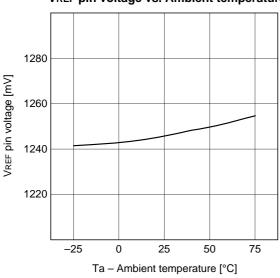
$$(R1 + R2 \ge 1.2k\Omega)$$

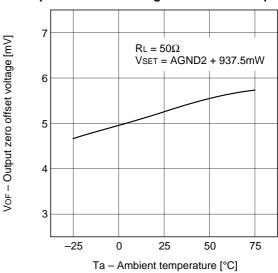

Application circuits shown are typical examples illustrating the operation of the devices. Sony cannot assume responsibility for any problems arising out of the use of these circuits or for any infringement of third party patent and other right due to same.

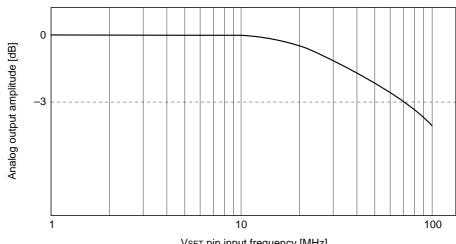
Notes on Use


- The CXA3197R has PECL and TTL input pins for the clock and reset inputs. When the clock is input at PECL level, it is recommended to also input the reset signal at PECL level. Likewise, when the clock is input at TTL level, it is recommended to also input the reset signal at TTL level.
- The input signal impedance should be properly matched to ensure the stable CXA3197R operation at high speed.
 - Particularly when ringing appears in the input clock in the MUX.1A and MUX.1B modes, if this ringing exceeds the clock input threshold value, the internal 1/2 frequency divider circuit may misoperate.
- All TTL input pins of the CXA3197R except for the PS pin go to High level when left open, and only the PS pin goes to Low level when left open. Set the PS pin to High level to operate the IC.
 When the PECL input pins are left open, the P (positive) side goes to High level and the N (negative) side goes to Low level. The PECL input pins are complementary, so be sure to use the P and N sides together.
- When the clock and reset input signal level is TTL, ***/T pins should be used and ***/E pins left open. When the clock and reset input signal level is PECL, ***/E pins should be used and ***/T pins left open.
- The power supply and grounding have a profound influence on converter characteristics. The power supply and grounding method are particularly important during high-speed operation.
 General points for caution are as follows.
 - The ground pattern should be as wide as possible. It is recommended to make the power supply and ground wider at an inner layer using a multi-layer board.
 - To prevent a DC offset from being generated between the analog and digital power supply patterns, it is recommended to connect the patterns at one point via a ferrite-bead filter, etc.
 - When using the CXA3197R with a single power supply, connect DGND1 and DGND2 to a common digital ground, and AGND2 to an analog ground. Also, DVcc1 and DVcc2 should use a common digital power supply, and AVcc2 should be connected to an analog power supply. AVccO serves as the analog output reference, so while it does not need to share the analog power supply, it should be used within the range that satisfies the analog output compliance voltage.
 - When using the CXA3197R with dual power supply, connect DGND1 and DVcc2 to the digital ground, and AVcc2 to the analog ground. DVcc1 uses a positive digital power supply (+5V, typ.), DGND2 uses a negative digital power supply (-5V, typ.), and AGND2 uses a negative analog power supply (-5V, typ.). Like when using a single power supply, the AVccO pin can be used within the range that satisfies the analog output compliance voltage. However, connecting it to the analog ground and using the analog ground as the reference for the analog output is recommended.
 - Ground the power supply pins as close to each pin as possible with a 0.1μF or more ceramic chip capacitor.
 - When using a single power supply, connect DVcc1 and DVcc2 to the digital ground, and AVcc2 and AVccO to the analog ground.
 - When using dual power supply, connect DVcc1 and DGND2 to the digital ground, and AGND2 to the analog ground. In this case, when using AVccO within the range that satisfies the compliance voltage, be sure to also connect the AVccO pin to the analog ground using a ceramic chip capacitor.
- The CXA3197R is designed with an analog output impedance of 50Ω . The analog outputs are wired with a characteristic impedance of 50Ω , and waveforms free of reflection can be obtained by terminating the analog outputs with 50Ω . Even when using only one of either AOUTP or AOUTN, if one analog output is terminated with 50Ω , be sure to also terminate the other analog output with 50Ω . (See the Application Circuit.)

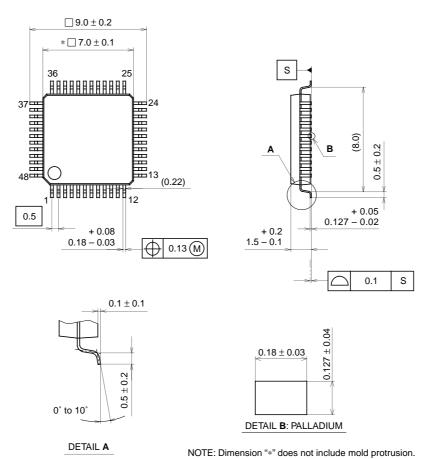
Example of Representative Characteristics


Output full-scale voltage vs. VSET pin voltage


Output full-scale voltage vs. Ambient temperature


VREF pin voltage vs. Ambient temperature

Output zero offset voltage vs. Ambient temperature



Multiplying bandwidth

Package Outline Unit: mm

48PIN LQFP (PLASTIC)

LQFP-48P-L01 SONY CODE **EIAJ CODE** P-LQFP48-7x7-0.5 JEDEC CODE

PACKAGE STRUCTURE						
PACKAGE MATERIAL	EPOXY RESIN					
LEAD TREATMENT	PALLADIUM PLATING					
LEAD MATERIAL	COPPER ALLOY					
PACKAGE MASS	0.2g					