LA6261

ON Semiconductor®

http://onsemi.com

Monolithic Linear IC
For Optical Disk Drive
6-Channel Driver

(BTL: 4 channels, H bridge: 2 channels)

Overview

The LA6261 is a 6-channel driver IC that incorporates 4 channels of BTL output and 2 channels of H-bridge output. It is optimal for the actuator driver for CDs, MDs, and other optical disk drives.

Features

- Six power amplifier channels on a single chip (BTL: 4 channles, H-bridge: 2 channels)
- IO max: 700mA (Each channel)
- Built-in level shifter circuits (BTL amplifier)
- Built-in thermal protection (thermal shutdown) circuit
- Separate power supply for H-bridge (2 channels)
- Onchip 3.3V regulator controller (uses an external output transistor)
- Adjustment pin for the H-bridge output

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

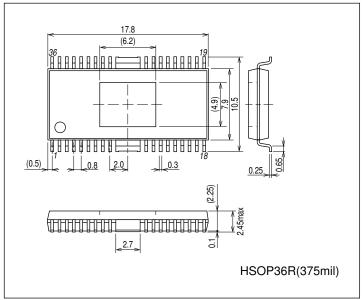
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC} max		14	V
Maximum output current	I _O max	for each of the channel 1 to 6	0.7	Α
Maximum input voltage	V _{IN} B		13	V
MUTE pin voltage	V _{MUTE}		13	V
Allowable power dissipation	Pd max	Independent IC	0.8	W
		Mounted on the specified board *	2	W
Operating ambient temperature	Topr		-30 to +85	°C
Storage ambient temperature	Tstg		-55 to +150	°C

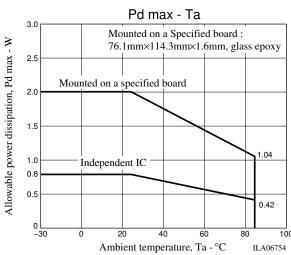
^{*} Mounted on a specified board: 76.1mm×114.1mm×1.6mm, glass epoxy.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Recommended Operating Conditions at $Ta = 25^{\circ}C$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	V _{CC}		5.6 to 13	٧

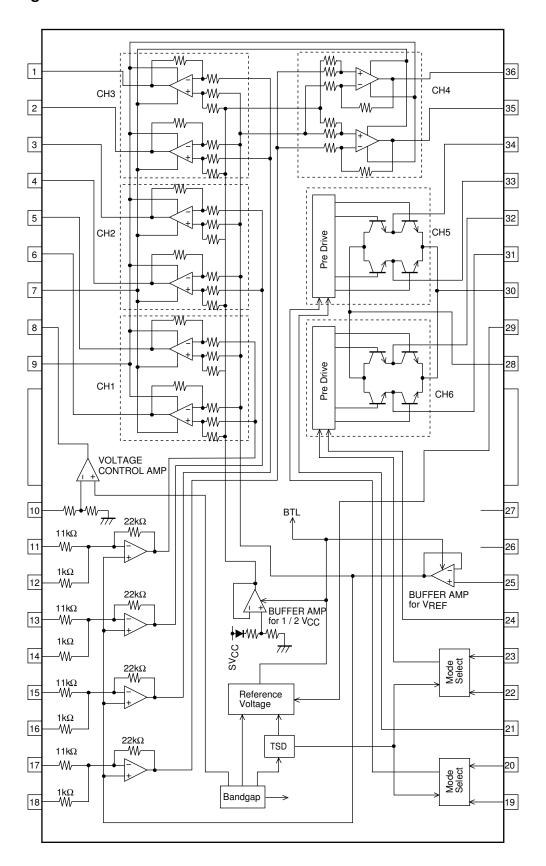

Electrical Characteristics at Ta = 25°C, $V_{CC}1 = V_{CC}2 = 8V$, $V_{REF} = 1.65V$


Parameter	Cumbal	Conditions	Ratings			Unit
Parameter	Symbol Conditions		min	typ	max	Unit
All Blocks						
No-load current drain ON	I _{CC} -ON	All outputs on *1, FWD=REV=0V		30	50	mA
V _{REF} input voltage range	V _{REF} -IN		0.5		V _{CC} -1.5	V
BTL AMP						
Output offset voltage	VOFF	BTL amplifier, the voltage difference between each channel outputs	-50		+50	mV
Input voltage range	V _{IN}	Applied to pins V _{IN} 1 to V _{IN} 4	0		VCC	٧
Output voltage	VO	Voltage between VO+ and VO- for each channel when RL=8 Ω *2	4	5		V
Closed-circuit voltage gain	V _G	The gain from the input to the output		4		deg
MUTE ON voltage	V _{MT} ON	*3	2		sv _{cc}	V
MUTE OFF voltage	V _{MT} OFF	*3	0		0.5	V
Slew rate	SR	For the independent amplifier.		0.5		V/μs
		Times 2 when between outputs *4				
H-bridge Block	Т					
Output voltage	V _O -LOAD	Voltage between $V_{\mbox{O}^+}$ and $V_{\mbox{O}^-}$ for each channel when $R_L{=}10\Omega$	6.2	6.7		V
Input low level	V _{IN} -L		0		1	V
Input high level	V _{IN} -H		2		sv _{cc}	V
Output setting voltage	VCONT	Voltage between V _{O+} and V _{O-} for each channel when VCONT=3V and R _L =10Ω		2.8		V
Regulator Block	•	•				
Output voltage	put voltage Vreg I _L =100mA		3.05	3.3	3.55	V
Output load variation	ΔV_{RL}	I _L =0 to 200mA	-50	0	10	mV
Supply voltage variation	ΔVV _{CC}	V _{CC} =6 to 12V, I _L =100mA	-15	21	60	mV

^{*1:} The total current dissipation for SVCC, PVCC1, and PVCC2 with no load

Package Dimensions

unit : mm (typ) 3251



^{*2:} Output in the saturated state

^{*3:} When the MUTE pin is high, the BTL output will be on, and when low, the BTL output will be OFF (HI impedance).

^{*4:} Design guarantee value

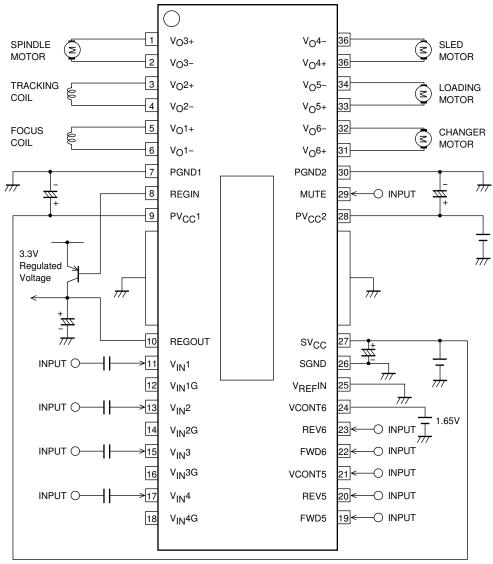
Block Diagram

ILA06744

Pin Description

Pin No.	Pin Name	Description	Equivalent Circuit Diagram
1	V _O 3+	Channel 3 (BTL) output (+)	Dino.
2	V _O 3-	Channel 3 (BTL) output (-)	Pin9
3	V _O 2+	Channel 2 (BTL) output (+)	
4	V _O 2-	Channel 2 (BTL) output (-)	
5	V _O 1+	Channel 1 (BTL) output (+)	W
6	V _O 1-	Channel 1 (BTL) output (-)	
7	PGND	Power system ground for channels 1 to 4 (BTL)	Pin 1 to 6, 35, 36
9	PV _{CC} 1	Power system power supply for channels 1 to 4 (BTL) (shorted to SV _{CC})	
35	V _O 4+	Channel 4 (BTL) output (+)	
36	V _O 4-	Channel 4 (BTL) output (-)	Pin7
8	REGIN	Regulator (to the base of the external PNP transistor)	PV _{CC} SV _{CC} SV _{CC} Pin 8 W 100Ω
10	REGOUT	Regulator (to the collector of the external PNP transistor)	PVCC Pin 10 PGND
11	V _{IN} 1	Channel 1 input	0
12	V _{IN} 1G	Channel 1 input (gain adjustment)	PV _{CC} +
13	V _{IN} 2	Channel 2 input	11kΩ
14	V _{IN} 2G	Channel 2 input (gain adjustment)	Pin 11, 13, 15, 17
15	V _{IN} 3	Channel 3 input	↑ →
16	V _{IN} 3G	Channel 3 input (gain adjustment)	PGND → G
17	V _{IN} 4	Channel 4 input	G W
18	V _{IN} 4G	Channel 4 input (gain adjustment)	PVCC 1 1kΩ Pin 12, 14, 16, 18 PGND SGND
19	FWD5	Channel 5 output direction switching (FWD),	BVa a
20	REV5	H-bridge logic input Channel 5 output direction switching (REV), H-bridge logic input	PVCC 50kΩ Pin 19, 20, 22, 23
22	FWD6	Channel 6 output direction switching (FWD), H-bridge logic input	PGND PGND
23	REV6	Channel 6 output direction switching (REV), H-bridge logic input	→ SGND

Continued on next page.


Continued from preceding page. Pin Name Description Pin No. Equivalent Circuit Diagram 21 VCONT5 Channel 5 output voltage setting PV_{CC} VCONT6 24 Channel 6 output voltage setting Pin 21, 24 PGND PGND 25 **VREFIN** Reference voltage input PV_{CC} -PGND SGND 28 PV_{CC}^2 Power system power supply for for channels 5 and 6 (H-bridge) Pin 28 PGND2 Power system ground for channels 5 and 6 (H-bridge) 30 Channel 6 (H-bridge) output (+) 31 V_O6+ 32 V_O6-Channel 6 (H-bridge) output (-) 33 V_O5+ Channel 5 (H-bridge) output (+) Channel 5 (H-bridge) output (-) 34 V_O5-Pin 31, 32 33, 34 Pin 30 29 MUTE BTL mute signal input PV_{CC} - $100k\Omega$ PGND SGND SGND 26 Signal system ground 27 sv_{CC} Signal system power supply (shorted to $PV_{CC}1$)

Truth Table

INP	UT	OUTPUT		
FWD5(6)	REV5(6)	V _O 5(6)+	V _O 5(6)-	
L	L	Z	Z	
L	Н	Н	L	
Н	L	L	Н	
Н	Н	L	L	

^{*}Z: HI-Impedance

Sample Application Circuit

ILA06743

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equa