

SANYO Semiconductors **DATA SHEET**

Bi-CMOSIC 4-Channel Switching Regulator Controller

Overview

The LV5654T is a 4-channel switching regulator controller.

Features

- Low-voltage (3V) operation.
- Independent standby functions for each of the four channels.
- Synchronous rectification : channel 1 and channel 2.
- Reference voltage precision : $\pm 1\%$.
- Is capable of driving MOS transistors.
- Supports inverting step-up operation (channel 3).

Specifications

Maximum Ratings at $Ta = 25^{\circ}C$

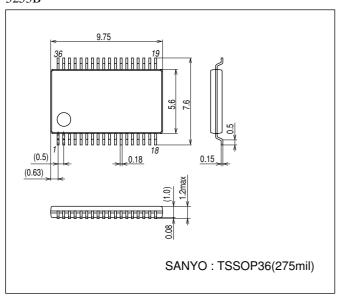
Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage 1	V _{CC} max	V _{CC} pin	-0.3 to 16	V
Maximum supply voltage 2	VBVIAS max	VBIAS pin	-0.3 to 18	V
Maximum clock input voltage	VCLKIN max	CLKIN pin	5.5	V
Allowable power dissipation	Pd max	Independent IC	0.4	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +125	°C

Recommended Operating Conditions at Ta = 25°C

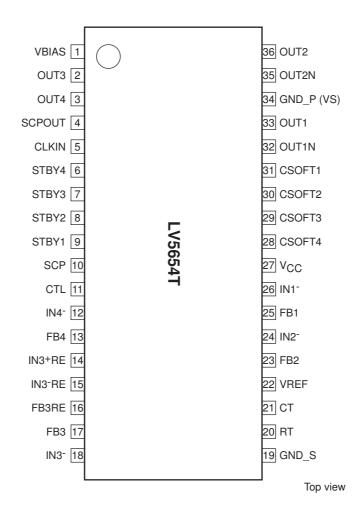
Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage 1	V _{CC}	V _{CC} pin	3 to 15	V
Supply voltage 2	VBIAS	VBIAS pin	3 to 15	V
Clock input voltage	VCLKIN	CLKIN pin	5	V
Timing resistor	RT		7 to 30	kΩ
Timing capacitor	СТ		100 to 1000	pF
Triangle wave frequency	fosc		0.1 to 1.3	MHz

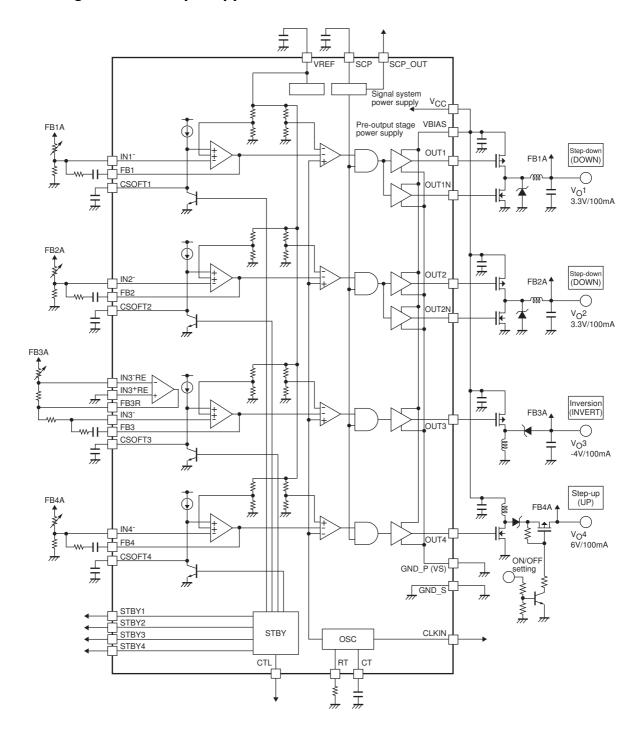
- Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.
- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

SANYO Semiconductor Co., Ltd. www.semiconductor-sanyo.com/network


LV5654T

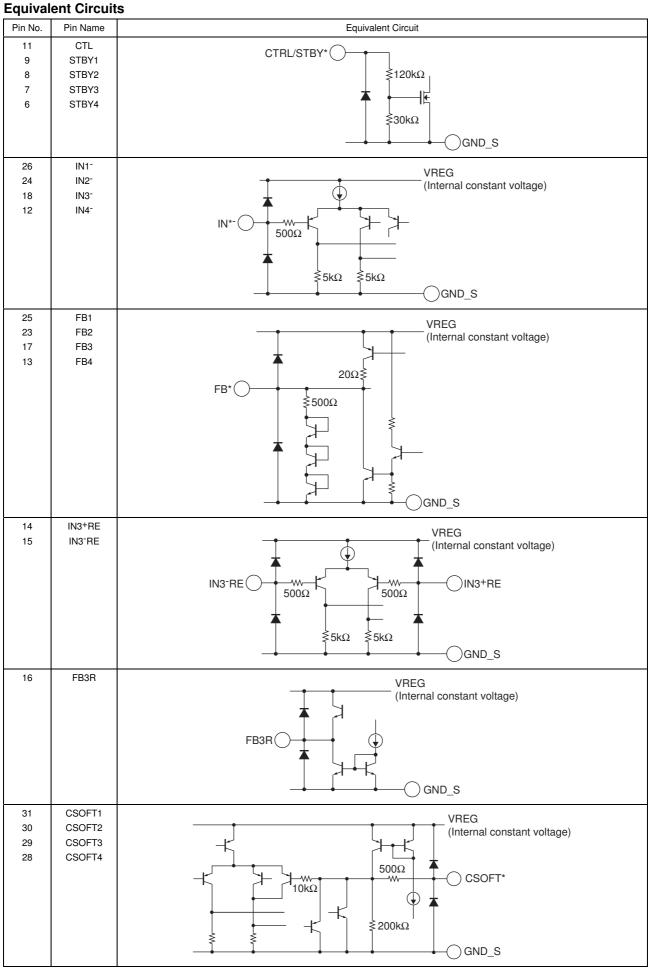
Electrical Characteristics at Ta = 25° C, V_{CC} = VBIAS = 3.6V, SCP = 0V


Parameter		Symbol Conditions		Ratings			Unit
raiaiiielei		Gymbol	Conditions	min	typ	max	Unit
Error amplifier 1							
IN+ pin internal bias voltage		VB	Value added to the error amplifier offset at the error amplifier + side voltage	0.504	0.51	0.516	V
Output low voltage	ch1 to ch4	V _{Low} FB	IN ⁻ = 2.0V, IFB = 20μA			0.2	V
Output high voltage	ch1 to ch4	V _{Hi} FB	IN ⁻ = 0V IFB1 = -20μA	2.0			V
Error amplifier 2	1						
IN3 ⁻ RE pin offset voltage		VOF		-6		6	mV
Output low voltage		V _{Low} FB3RE	IN3 ⁻ RE = 2.0V, IFB = 20µA			0.2	V
Output high voltage		V _{Hi} FB3RE	IN3 ⁻ RE = -10mV, IFB = 500µA	2.0			V
Protection circuit							
Threshold voltage		V _{SCP}		1.1	1.25	1.4	V
SCP pin current		ISCP			4		μA
Short circuit detection signal pin		VSCPOUT	Open collector ISCPOUT = 100μA			0.2	V
Software start block (ch	1 to ch4)				•	•	
Soft start current	ch1 to ch4	I _{SF}	CSOFT = 0V	3.2	4	4.8	μA
Soft start resistance	ch1 to ch4	R _{SF}		160	200	240	kΩ
Fixed duty					•	•	
Maximum on duty 1-2	ch1 to ch2	Duty MAX 1-2	Out monitor, IN ⁻ = 0V	100			%
Maximum on duty 3	ch3	Duty MAX 3	Out monitor, IN ⁻ = 0V	80	85	90	%
Maximum on duty 4	ch4	Duty MAX 4	Out monitor, $IN^- = 0V$	80	85	90	%
Output block 1 to 6							
OUT pin high side on res	istance	R _{OUT} SOUR	I _O = 10mA		25		Ω
OUT pin high side on res	istance	R _{OUT} SINK	I _O = 10mA		10		Ω
Triangle wave oscillator	r block						
Current setting pin voltag	е	VT RT	RT = 10kΩ		0.57		V
Output current		I _{OH} CT			190		μA
Output current ratio		∆I _O CT	CT pin, rise/fall		2.5		
Oscillation frequency		fOSC1	RT = 10kΩ, CT = 270pF		510		kHz
Reference voltage block	k						
Reference voltage		VREF			1.240		V
Line regulation		V _{LN} REF	$V_{CC} = 3V \text{ to } 15V$			10	mV
Control circuit							
On state voltage		V _{ON} CTL		2.0			V
OFF state voltage		V _{OFF} CTL				0.6	V
Pin input current		I _{IN} CTL				60	μA
Standby circuit							
On voltage		V _{ON} STBY		2.0			V
Off voltage		V _{OFF} STBY				0.6	V
Pin input current		I _{IN} STBY	VSTBY = 2V			60	μA
All circuits							
V _{CC} current consumption	1	ICC	IN1 ⁻ to IN4 ⁻ = 1V		4	5	mA
Standby mode current co	nsumption	IOFF	VSTBY = VCTL = 0V			1	μA
			IOFF = ICC + IBIAS				

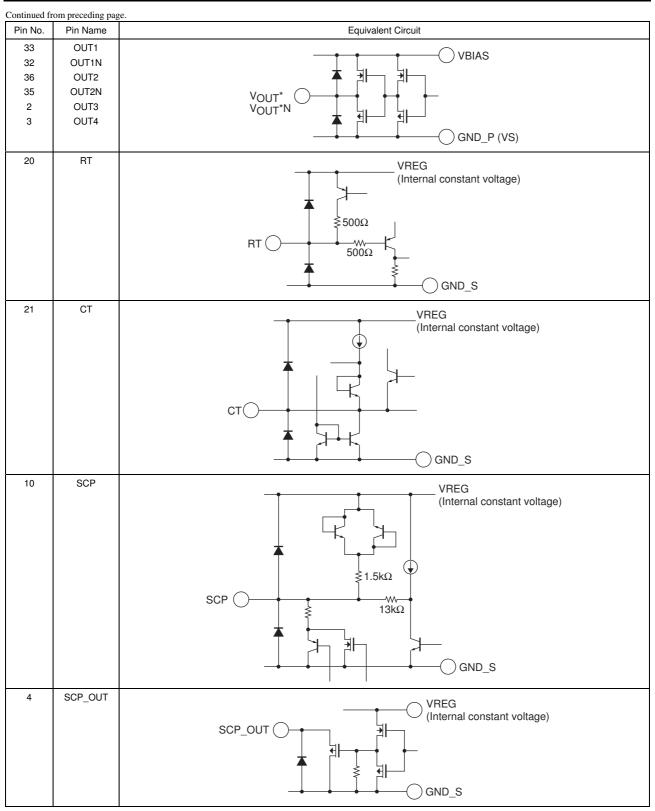

Package Dimensions

unit : mm (typ) 3253B

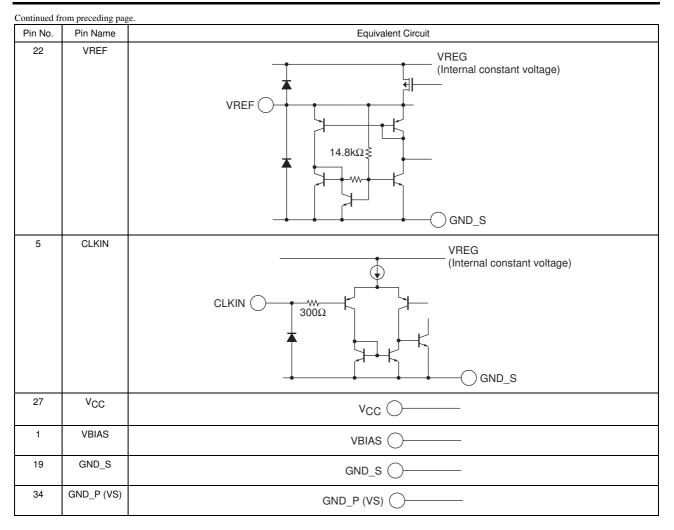
Pin Assignment



Block Diagram and Sample Application Circuit


The CLKIN pin must be connected to GND, when the external clock synchronization (CLKIN) is not used.

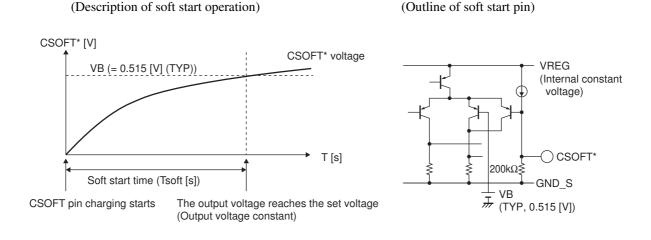
Block	Pin No.	Pin Name	Functions
ch1 9 STBY1 26 IN1 ⁻ DOWN 25 FB1		STBY1	Standby input. H/ch1 ; ON, L/ch1 ; OFF.
		IN1 ⁻	Error amplifier Inverting input.
		FB1	Error amplifier output.
(Step-down)	31	CSOFT1	Soft start setting capacitor connection. Connect to GND through a capacitor.
	33	OUT1	Output. External transistor P-channel gate connection.
	32	OUT1N	Output. External transistor N-channel gate connection.
ch2	8	STBY2	Standby input. H/ch2 ; ON, L/ch2 ; OFF.
	24	IN2 ⁻	Error amplifier Inverting input.
DOWN	23	FB2	Error amplifier output.
(Step-down)	30	CSOFT2	Soft start setting capacitor connection. Connect to GND through a capacitor.
F	36	OUT2	Output. External transistor P-channel gate connection.
	35	OUT2N	Output. External transistor N-channel gate connection.
ch3 7 STBY3		STBY3	Standby input. H/ch3 ; ON, L/ch3 ; OFF.
(Inversion)	14	IN3+RE	Inversion amplifier, + (noninverting) input.
	15	IN3-RE	Inversion amplifier, - (Inverting) input.
	16	FB3RE	Inversion amplifier output.
	18	IN3 ⁻	Error amplifier, - (Inverting) input.
	17	FB3	Error amplifier output.
	29	CSOFT3	Soft start setting capacitor connection. Connect to GND through a capacitor.
	2	OUT3	Output. External transistor P-channel gate connection.
ch4	6	STBY4	Standby input. H/ch4 ; ON, L/ch4 ; OFF.
	12	IN4⁻	Error amplifier Inverting input.
Step-up	13	FB4	Error amplifier output.
(UP)	28	CSOFT4	Soft start setting capacitor connection. Connect to GND through a capacitor.
	3	OUT4	Output. External transistor N-channel gate connection.
POWER	27	V _{CC}	Power supply input (signal system).
	1	VBIAS	Power supply input (pre-output stage).
	19	GND_S	Ground (signal system).
	34	GND_P (VS)	Ground (pre-output stage).
	22	VREF	Reference voltage output.
CONTROL	11	CTL	Output control.
	10	SCP	Connection pin for the delay time setting capacitor of short circuit detection circuit.
	4	SCPOUT	SCP_OUT pin (SCP output).
OSC	21	СТ	Triangle wave oscillation frequency setting capacitor connection.
	20	RT	Triangle wave oscillation frequency setting resistor connection.
	5	CLKIN	External clock input.


Continued on next page.

LV5654T

Continued on next page.

LV5654T



Notes

(1) Soft start time setting method

The soft start time is set with the capacitor connected between CSOFT* and GND_S.

This IC has an independent soft start function for each channel, so a capacitor must be connected for each channel to set the soft start (time).

(2) Setting the oscillation frequency

The internal oscillation frequency is set by the resistor connected to the RT pin and the capacitor connected to the CT pin. The waveform generated on CT is a triangular wave with the charging/discharging waveform determined by RT and CT.

$$f_{OSC} = 1.32 \times \frac{1}{CT \times RT}$$
 [Hz]

The actual internal oscillation frequency deviates from the calculated value due to overshoot, undershoot and other factors, so the frequency should be confirmed in an actual set.

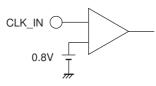
(3) External input CLK function (CLK_IN)

Switching operation can be synchronized with external clock input (CLK_IN) by using the CLK_IN pin.

• External clock (CLK_IN) frequency and input level

When using external clock (CLK_IN) input, input a frequency equal to the internal oscillation frequency +20% or more to CLK_IN. In addition, the CLK_IN configuration is shown in the figure "CLK_IN (input) equivalent circuit (outline)" below.

The 0.8V reference voltage and CLK_IN are compared to determine the edges, so input a signal of 0.8V or more (V_{CC} voltage or less) as the external clock (CLK_IN).


• External/internal clock switching

Set the CTL pin Low before switching between the external clock and the internal clock. Switching clocks when running may give rise to output voltage fluctuations.

• Maximum ON duty

The maximum ON duty (Duty_MAX*) of channel 3 to channel 4 is the 85% (typ.) setting. When using the external clock (CLK_IN), the maximum ON duty (Duty_MAX*) becomes smaller, so care must be taken for the set output voltage.

(CLK_IN (input) equivalent circuit (outline))

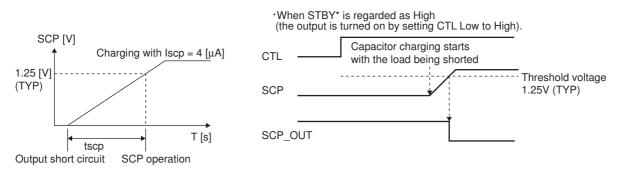
(4) SCP function

• Description of operation

When any one of FB1 to FB4 goes High due to the load being shorted or other reason, charging to the SCP pin starts. If output does not recover during the set time Tscp and the SCP pin voltage exceeds the threshold voltage, the protection circuit (SCP) operates, and all channel outputs are turned OFF. The SCP_OUT pin set from High to Low. All outputs are latched OFF by the protection circuit (SCP). This latched state (output OFF) is canceled by setting the CTL pin Low or by turning the power supply off.

When not using the protection function (SCP), the SCP pin must be shorted to GND_S with a line that is as short as possible.

• SCP_OUT


The SCP_OUT pin functions to notify an external microcontroller or other component of the output status (Low when SCP operates). The output configuration is an open drain output, and a pull-up resistor is used. When not used, leave this pin open.

• Switching time

The SCP_OUT switching time is set by the capacitor connected to the SCP pin.

(SCP charging operation)

(SCP and SCP_OUT operation)

- SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
- SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
- Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of December, 2008. Specifications and information herein are subject to change without notice.