

LPC-E2124

Get Started Guide

Revision 1.0 28/03/2005

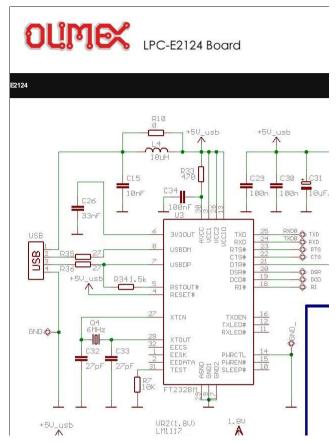
Introduction Picture Schematic Board Peripherials Technical characteristics JTAG Connector USB Connector Ethernet Connector Extension Port Dallas Connector Jumpers RS232 Programming RTC Programming Blinking led Links

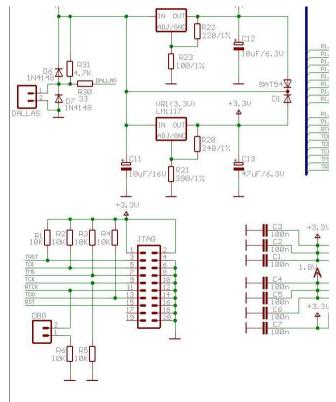
Introduction

The LPC2124 are based on a 16/32 bit ARM7TDMI-S™ CPU with real-time emulation and embedded trace support, together with 128/256 kilobytes (kB) of embedded high speed flash memory. A 128-bit wide memory interface and a unique accelerator architecture enable 32-bit code execution at maximum clock rate. For critical code size applications, the alternative 16-bit Thumb Mode reduces code by more than 30% with minimal performance penalty.

With their compact 64 pin package, low power consumption, various 32-bit timers, 4-channel 10-bit ADC, PWM channels and 46 GPIO lines with up to 9 external interrupt pins these microcontrollers are particularly suitable for industrial control, medical systems, access control and point-of-sale. With a wide range of serial communications interfaces, they are also very well suited for communication gateways, protocol converters and embedded soft moderns as well as many other general-purpose applications.

The LPC-E2124 Development board is designed to evaluate LPC2124 processor. It has the following features:


- CS8900 Ethernet interface
- two general purpose buttons
- potentiometer connected to analog input 0
- Dallas i-button interface
- 24LC515 EEPROM for external web storage
- standard JTAG connector with ARM2x10 pin layout for programming/debugging with ARMJTAG
- two on board voltage regulators 1.8V and 3.3V with up to 800mA current
- single power supply: +5VDC required
- three LAN status LEDs, three general purpose status LEDs
- power supply filtering capacitor
- USB to RS232 interface
- RESET circuit with external control of Philips ISP utility via USB/RS232
- RESET button
- DBG jumper for JTAG enable
- BSL jumper for bootloader enable
- JRST jumper for enable/disable external RESET control by RS232
- 14.7456 Mhz crystal
- extension header for all uC ports
- PCB: FR-4, 1.5 mm (0,062"), green soldermask, white silkscreen component print
- Dimensions: 80x90 mm (3.15x3.55")


The purpose of this guide is to describe LPC-P2124 Development board.

Board LPC-E2124 <u>Hardware details</u> Describes the hardware peripherials in detail <u>Programming</u> describes how to write programs for the E2124 Board.

Revision 01.01.2005 Creating

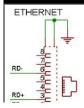
LPC E2129 Hardware description

Peripherials

Unit	Description
Ethernet connector	RJ45 Ethernet connector
USB Connector	USB connector type B
JTAG Connector	2x10 0,1" step connector for programming with ARM-JTAG.
Dallas Connector	Interface to Dallas device connected to P0.24 / TD2 (PIN 5).
Buttons	Two buttons connected to interrupt ports Button 1 - P0.15 / R11 / EINT2 (PIN 45) Button 2 - P0.9 / RXDT / PVM6/ EINT3 (PIN 34)
Leds	Red status led (L1) connected to P0.8 / TXD1 / PWM4 (PIN 33) Green status led (L2) connected to P0.10 / RTS1 / CAP1.0 (PIN 35) Yellow status led (.3) connected to P0.11 / CTS1 / CAP1.1 (PIN 37) and three LAN status leds

Technical characteristics

Parameter	Description		
Voltage Supply	+ 5.0VDC from USB		
CPU	LPC2124		
Crystals	Crystal 1 - Q1 - 14,745 MHzorystal Crystal 2 - Q2 - 20 MHzorystal Crystal 3 - Q4 - 6 MHzorystal		
Board dimensions	80x90 mm (3.15x3.55")		
PCB	FR-4, 1.5 mm (0,062"), green soldermask, white silkscreen component print		
Operating Temperature	form 0°C to 70°C		


JTAG Connector

					1 - VCC	VCC	-
					2 - VCC	VCC	-
					3 - TRST	PIN 20	P1.31 / TRST
		JTAG	6		4 - GND	GROUND	-
VCC	1		2	VCC	5 - TDI	PIN 60	P1.28 / TDI
TRST	3	-	4	GND	6 - GND	GROUND	-
TDI	5		6	GND	7 - TMS	PIN 52	P1.30/TMS
TMS	7		8	GND	8 - GND	GROUND	-
TCK	9		10	GND	9 - TCK	PIN 56	P1.29/TCK
RTCK	11		12	GND	10 - GND	GROUND	-
TDO	13		14	GND	11 - RTCK	PIN 24	P1.26/RTCK
RST	15		16	GND	12 - GND	GROUND	-
-	17		18	GND	13 - TDO	PIN 64	P1.27 / TDO
	19		20	GND	14 - GND	GROUND	-
					15 - RST	PIN 57	RST
		0			16 - GND	GROUND	-
					17	no connected	-
					18 - GND	GROUND	-
					19	no connected	-
					20 - GND	GROUND	-

USB Connector

GND	4	Pin / Name	Connected to:	Functionality
USBDP	3 00	1 - +5V	+5VDC	-
USBDM	20	2 - USBDM	FT232BM(PIN 8)	USBDM
+5V		3 - USBDP	FT232BM(PIN 7)	USBDP
		4 - GND	GROUND	-

Ethernet Connector

Pin / Name	Connected to:	Functionality
1 - TD+	CS8900A PIN 87	TXD+
2 - TD-	CS8900A PIN 88	TXD-
3 - RD+	CS8900A PIN 91	RXD+
4 -	not connected	-
5 -	not connected	-
6 - RD-	CS8900A PIN 92	RXD-
7 -	not connected	-

TD+ 1	8 -	not conn	ected -	
las Connector				
DALLAS				
	Pin / Name	Connecte	ed to: Functi	onality
ID 2	1 - DALLAS	6 PIN 5	P0.24	/TD2
	2 - GND	GROUND) -	
ension ports				
		Pin / Name	Connected to:	Functionality
		PIN 1	PIN 16	P1.16/TRACEPTK0
		PIN 2	PIN 22	P0.2/SCL/CAP0.0
		PIN 3	PIN 12	P1.17/TRACEPTK1
		PIN 4	PIN 26	P0.3/SDA/MAT0.0/EINT1
		PIN 5	PIN 8	P1.18/TRACEPTK2
		PIN 6	PIN 45	P0.15/RI1/EINT2
		PIN 7	PIN 4	P1.19/TRACEPTK3
EXT	-	PIN 8	PIN 34	P0.09/RXD1/PWM6/INT3
		PIN 9	PIN 48	P1.20/TRACESYNC
1.16 1	2 SCL	PIN 10	PIN 33	P0.8/TXD1/PWM4
1.17 3	4 SDA 6 B1	PIN 11	PIN 44	P1.21/PIPESTAT0
1.19 7	8 B2	PIN 12	PIN 35	P0.10/RTS1/CAP1.0
1.20 9	10 LED1	PIN 13	PIN 40	P1.22/PIPESTAT1
1.21 11	12 LED2	PIN 14	PIN 37	P0.11/CTS1/CAP1.1
1.22 13	14 LED3	PIN 15	PIN 36	P1.23/PIPESTAT2
91.23 15	16 BSL	PIN 16	PIN 41	P0.14/DCD1/EINT1
P1.24 17	18 P0.25/RD1	DIN 147	DIN 40	

PIN 17

PIN 18

PIN 19

PIN 20

PIN 21

PIN 22

PIN 23

PIN 24

PIN 25

PIN 26

PIN 27

PIN 28

PIN 29

PIN 30

PIN 32

PIN 28

PIN 10

PIN 24

PIN 11

PIN 64

PIN 13

PIN 60

PIN 14

PIN 56

PIN 15

PIN 52

PIN 57

PIN 9

P1.24 / TRACECLK

P0.27 / AINTO / CAP0.1 / MAT0.1

P0.28 / AINT1 / CAP0.2 / MAT0.2

P0.29 / AINT2 / CAP0.3 / MAT0.3

P0.30 / AINT3 / EINT3 / CAP0.0

P0.25/RD1

TD1

P1.25/EXTIN0

P1.26/RTCK

P1.27 / TDO

P1.28/TDI

P1.29/TCK

P1.30/TMS RST

21

23

29

20 TD1

22

26 AIN2

30

32 +5V USB

34 +3.3V

AIN0

AIN1 24

AIN3 28

RST

P1.25 19

RTCK

TDO

TDI 25

TCK 27

TMS

TRST 31

GND 33

PIN 31	PIN 20	P1.31/TRST
PIN 32	+5VUSB	-
PIN 33	GROUND	-
PIN 34	+3.3V	-

Jumpers

Jumpers	Position	Description
Jumper 1 (L1)		Red led is not connected.
		Red led connected to P0.8 / TXD1 / PWM4 (PIN 33).
humana 0 (1 0)		Green led is not connected.
Jumper 2 (L2)		Green led connected to P0.10 / RTS1 / CAP1.0 (PIN 35).
Jumper 3 (L3)		Yellow led is not connected.
Jumper 3 (L3)		Yellow led connected to P0.11 / CTS1 / CAP1.1 (PIN 37).
Jumper 4 (JRST)		Disable ICSP programming.
Jumper 5 (BSL)		Enable ICSP programming - via USB Connector (virtual COM port).
Jumper 6 (DBG)		Disable JTAG programming.
Jumper 6 (DBG)		Enable JTAG programming.
		Copyright (c) OLIMEX Ltd. All rights reserved

Programming: RS232

RS232 Connector

					Pin / Name	Description
	RS	23	2		1-CD	Carrier Detected.
CD	10	-			2-RXD	Received Data.
RXD	2 5		6	DSR	3-TXD	Transmited Data.
TXD	3	3	7	RTS	4 - DTR	Data Terminal Ready.
DTR	4	3	8	CTS	5 - GND	Signal Ground.
GND	5	5	9	RI	6 - DSR	Data Set Ready.
	C	-	,		7-RTS	Request to Send.
					8-CTS	Clear to Send
					9-RI	Ring Indicator.

Register description

Register	Address	Function
U0RBR	0xE000C000 DLAB = 0	Receiver Buffer Register. Input data buffer.
U0THR	0xE000C000 DLAB = 0	Transmit Holding Register. Output data buffer.
U0DLL	0xE000C000 DLAB = 1	Divisor Latch LSB.
UODLM	0xE000C000 DLAB = 1	Divisor Latch MSB.
U0IER	0xE000C004 DLAB = 0	Interrupt Enable Register.
U0IIR	0xE000C008	Interrupt ID Register.
U0FCR	0xE000C008	FIFO Control Register.

U0LCR	0xE000C00C	Line Control Register.
UOLSR	0xE000C014	Line Status Register.
U0SCR	0xE000C01C	Scratch Pad Register.
UOTER	0xE000C030	Transmit Enable.

1.Initialization

1.1. Set Line Control Register

UOLCR	Function	Description	Reset Value
1:0	Word Length Select	00: 5 bit character length 01: 6 bit character length 10: 7 bit character length 11: 8 bit character length	0
2	Stop Bit Select	0: 1 stop bit 1: 2 stop bits (1.5 if U0LCR[1:0]=00)	0
3	Parity Enable	0: Disable parity generation and checking 1: Enable parity generation and checking	0
5:4	Parity Select	00: Odd parity 01: Even parity 10: Forced "1" stick parity 11: Forced "0" stick parity	0
6	Break Control	0: Disable break transmission 1: Enable break transmission. Output pin UARTO TxD is forced to logic 0 when U0LCR6 is active high.	0

7		0: Disable access to Divisor Latches	0
'		1: Enable access to Divisor Latches	

1.2. UART0 Baudrate Calculation

The UODLL and UODLM registers together form a 16 bit divisor where UODLL contains the lower 8 bits of the divisor and UODLM contains the higher 8 bits of the divisor.

devisor = pclk / (16 * baud);

1.3. Set Functionality to pins

Set functionality to P0.0 -> TX0 and P0.1 -> RXD0

2. RS232 Communication

2.1. Write to RS232

Use follow algorithm to send data:

- fill U0THR register with data to write
- wait shift all data
- clear interrupt flag

2.2. Read from RS232

Use follow algorithm to receive data:

- wait read all data
- clear interrupt flag
- get data from UORBR

3. Example

```
Initialize:
//set Line Control Register (8 bit, 1 stop bit, no parity, enable DLAB)
UOLCR bit.WLS = 0x3; //8 bit
UOLCR bit.SBS = 0x0; //1 stop bit
UOLCR bit.FE = 0x0; //no parity
UOLCR_bit.DLAB = 0x1; //enable DLAB
//devisor
```

```
UUDLL = Pclk / (16 * baud); //low bite
UUDL# = Pclk / (16 * baud)>>8; //high bite
UUCR &= ~0x80;
//set functionality to pins: port0.0 -> TX0, port0.1 -> RXD0
PTMSEL0_bit.P0_0 = 0x1;
PTMSEL0_bit.P0_1 = 0x1;
```

Read Data:

//when UOLSR_bit.DR is 1 - UORBR contains valid data
while (UOLSR_bit.DR == 0);
return UORBR;

Write Data:

```
//when UOLSR_bit.THRE is 1 - UOTHR contains valid data.
while (UOLSR_bit.THRE == 0);
UOTHR = ch0;
```


Programming: Real Time Clock

Register description

Register	Address	Function
ILR	0xE0024000	Interrupt Location. Reading this location indicates the source of an interrupt. Writing a one to the appropriate bit at this location clears the associated interrupt.
CTC	0xE0024004	Clock Tick Counter. Value from the clock divider.
CCR	0xE0024008	Clock Control Register. Controls the function of the clock divider.
CIIR	0xE002400C	Counter Increment Interrupt. Selects which counters will generate an interrupt when they are incremented.
AMR	0xE0024010	Alarm Mask Register. Controls which of the alarm registers are masked. RW
CTIME0	0xE0024014	Consolidated Time Register 0
CTIME1	0xE0024018	Consolidated Time Register 1
CTIME2	0xE002401C	Consolidated Time Register 2

1.Initialization

1.1. Turn on the 32KHz external clock

- CLKSRC (bit 4 from CCR Register) 0 Disable 32kHz external clock
- 1 Enable 32kHz external clock

1.2. Enable Interrupt

CIIR Function Description

U INDEC WITCH ONE, ATTICUENTERLOI DE SECOND VAIDE GENERALES

1	IMMN	When one, an increment of the Minute value generates an interrupt.
2	IMHOUR	When one, an increment of the Hour value generates an interrupt.
3	IMDOM	When one, an increment of the Day of Month value generates an interrupt.
4	IMDOW	When one, an increment of the Day of Week value generates an interrupt.
5	IMDOY	When one, an increment of the Day of Year value generates an interrupt.
6	IMMON	When one, an increment of the Month value generates an interrupt.
7	IMYEAR	When one, an increment of the Year value generates an interrupt.

1.3. Start the Real Time Clock

CLKEN (bit 0 from CCR Register) Enable/Disable Real Time Clock

- 0 Disable Real Time Clock
- 1 Enable Real Time Clock

2. Example

Initialize:

CCR bit.CLKEN			//rtc disable
CCR_bit.CLKSRC	=	1;	//set external 32kHz oscillator
CCR bit.CTCRST	=	0;	//disable reset
CCR_bit.CTTEST	=		
AMR	=	0;	//initialize interrupt mask register of RTC
CIIR_bit.IMSEC	=		//enable interupt every seconds
ILR	=	3;	//clear all interrupt of RTC
CCR_bit.CLKEN	=	1;	//rtc enable

Copyright (c) OLIMEX Ltd. All rights reserved

r.

Programming: Blinking LED

GPIO Register map

Generic name	Description
IOPIN	GPIO Port Pin value register. The current state of the GPIO configured port pins can always be read from this register, regardless of pin direction and mode. Activity on non-GPIO configured pins will not be reflected in this register.
IOSET	GPIO Port Output set register. This register controls the state of output pins in conjunction with the IOCLR register. Writing ones produces highs at the corresponding port pins. Writing zeroes has no effect.
IODIR	GPIO Port Direction control register. This register individually controls the direction of each port pin.
IOCLR	GPIO Port Output clear register. This register controls the state of output pins. Writing ones produces lows at the corresponding port pins and clears the corresponding bits in the IOSET register. Writing zeroes has no effect.

Pin Connect Block Register Map

Register name	Description
PINSEL0	PINSEL0 Pin function select register 0 (from P0.0 to P0.15)
PINSEL1	PINSEL1 Pin function select register 1 (from P0.16 to P0.31)
PINSEL2	PINSEL2 Pin function select register 2

1. Initialization (general case)

1.1. Set first functionality to port

1.2. Set port which is connected to LED as output

IOODIR = 0xFF; //set P0.0 to P0.15 port as output

2. Led blink (general case)

3. Example - blink led, which is connected to P0.8

```
//nHialization
PINSEL0_bit.P0_8 = 0x0; // set first functionality to port
IOODIR_bit.P0_8 = 0x1; // set P0.8 port to output
IOOSET_bit.P0_8 = 0x1; // set P0.8 port to high
```

l/loop forever

OUMER LPC-E2124 Board
Links
1. Philips web site
LPC2124 product datasheets, application notes, etc info: http://www.semiconductors.philips.com/
2. LPC microcontrollers discussion forum
http://groups.yahoo.com/group/tpc2000/ - forum for discussions on LPC2000 ARM microcontrollers
http://groups.yehoo.com/group/arm-olimex/ - forum for discussions on Olimex ARM boards
3. IAR Systems EW-ARM C compiler and debugger
http://www.iar.com/Products/?name=EWARM
4. Rowley associates CrossWorks for ARM C compiler and debugger