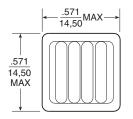
THT POWER INDUCTORS

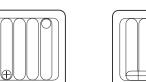
Power Cubes - PG0322NL Series

Height: 9.5mm Max

Footprint: 14.5mm x 14.5mm Max

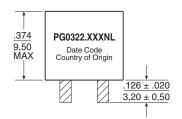

Current Rating: up to 60A

Inductance Range: 0.25μH to 1.10μH

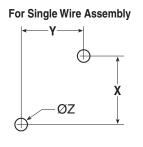

Electrical Specifications @ 25° C — Operating Temperature - 40° C to + 130° C 1												
Part Number	Inductance ² @Irated (μΗ ΤΥΡ)	Irated ³ (A)	DCR (mΩ ±8%)	Inductance @0Apc (µH ±15%)	Saturation ⁴ Current Isat (A)	Heating⁵ Current Ioc (A)	Core Loss ⁶ Factor					
							K1	K2				
PG0322.281NL	0.25	50	0.47	0.28	50	60	3.55e-11	17.6				
PG0322.451NL	0.41	43	0.96	0.45	47	43	3.55e-11	20.2				
PG0322.601NL	0.54	40	0.96	0.60	40	43	3.55e-11	26.9				
PG0322.801NL	0.72	37	1.25	0.80	37	38	3.55e-11	27.9				
PG0322.122NL	1.10	30	1.55	1.20	30	32	3.55e-11	34.3				

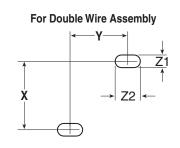
Mechanical

Schematic



For Double Wire Assembly




Dimensions: Inches mm

Unless otherwise specified, all tolerances are $\pm .010$

Suggested Pad Layout

Pad Layout Dimensions (in./mm)

Part Number	X ±.039/1.0	Y ±.039/1.0	Z MAX	Z1 MAX	Z2 MAX
PG0322.281NL	.276/7,00	.295/7,50	-	.075/1,90	.114/2,90
PG0322.451NL	.276/7,00	.315/8,00	_	.059/1,50	.094/2,40
PG0322.601NL	.276/7,00	.315/8,00	_	.059/1,50	.094/2,40
PG0322.801NL	.295/7,50	.315/8,00	.063/1,60	-	-
PG0322.122NL	.295/7,50	.354/9,00	.063/1,60	-	-

THT POWER INDUCTORS Power Cubes - PG0322NL Series

Notes from Tables

- 1. The temperature of the component (ambient plus temperature rise) must be within the specified operating temperature range.
- 2. Inductance at Irated is a typical inductance value for the component taken at rated current.
- The rated current listed is the lower of the saturation current @ 25°C or the heating current.
- 4. The saturation current, ISAT, is the current at which the component inductance drops by 5% (typical) at an ambient temperature of 25°C. This current is determined by placing the component in the specified ambient environment and applying a short duration pulse current (to eliminate self-heating effects) to the component.
- 5. The heating current, IDC, is the DC current required to raise the component temperature by approximately 40°C. The heating current is determined by mounting the component on a typical PCB and applying current for 30 minutes. The temperature is

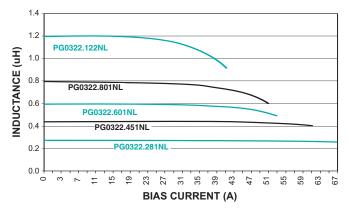
measured by placing the thermocouple on top of the unit under test. Take note that the component's performance varies depending on the system condition. It is suggested that the component be tested at the system level, to verify the temperature rise of the component during system operation.

6. Core loss approximation is based on published core data:

Core Loss @ 100° C = K1 * (f)^{1.6} * (K2 Δ I)^{2.36}

Where: Core Loss = in Watts

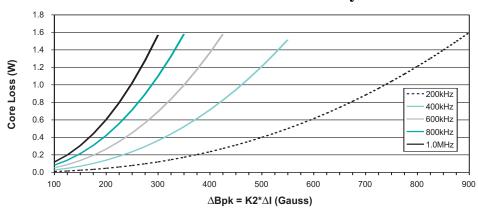
f = switching frequency in kHz


K1 & K2 = core loss factors

 ΔI = delta I across the component in Ampere


K2∆I = one half of the peak to peak flux density across the component in Gauss

7. Unless otherwise specified, all testing is made at 100kHz, 0.1Vac.


Inductance vs Current Characteristics

Temp. Rise vs Power Dissipation

Core Loss vs Flux Density

