TOIREX # XP161A1355PR-G ETR1124_003 #### **Power MOSFET** ### **■**GENERAL DESCRIPTION The XP161A1355PR-G is an N-channel Power MOSFET with low on-state resistance and ultra high-speed switching characteristics. Because high-speed switching is possible, the IC can be efficiently set thereby saving energy. A gate protect diode is built-in to prevent static damage. The small SOT-89 package makes high density mounting possible. ### APPLICATIONS - Notebook PCs - Cellular and portable phones - On-board power supplies - Li-ion battery systems # ■PIN CONFIGURATION/ MARKING G : Gate S : Source D : Drain SOT-89 (TOP VIEW) ### **■**EQUIVALENT CIRCUIT N-channel MOSFET (1 device built-in) ### **■**FEATURES **Low On-State Resistance** : Rds (on)= 0.05Ω @ Vgs = 4.5V : Rds (on)= 0.07Ω @ Vgs = 2.5V : Rds (on)= 0.15Ω @ Vgs = 1.5V Ultra High-Speed Switching Gate Protect Diode Built-in Driving Voltage : 1.5V N-Channel Power MOSFET **DMOS Structure** Small Package : SOT-89 Environmentally Friendly: EU RoHS Compliant, Pb Free ### **■**PRODUCT NAME | PRODUCT NAME | PACKAGE | ORDER UNIT | | | |-------------------------------|---------|------------|--|--| | XP161A1355PR | SOT-89 | 1,000/Reel | | | | XP161A1355PR-G ^(*) | SOT-89 | 1,000/Reel | | | ^(*) The "-G" suffix denotes Halogen and Antimony free as well as being fully RoHS compliant. ### ■ ABSOLUTE MAXIMUM RATINGS Ta = 25°C | | | 14 - 20 3 | | | | |-----------------------------|--------|-----------|-------|--|--| | PARAMETER | SYMBOL | RATINGS | UNITS | | | | Drain-Source Voltage | Vdss | 20 | V | | | | Gate-Source Voltage | Vgss | ±8 | V | | | | Drain Current (DC) | ld | 4 | Α | | | | Drain Current (Pulse) | Idp | 16 | Α | | | | Reverse Drain Current | ldr | 4 | Α | | | | Channel Power Dissipation * | Pd | 2 | W | | | | Channel Temperature | Tch | 150 | °C | | | | Storage Temperature | Tstg | -55~150 | °C | | | ^{*} When implemented on a ceramic PCB ^{*} x represents production lot number. ## **■**ELECTRICAL CHARACTERISTICS DC Characteristics Ta = 25°C | PARAMETER | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | UNITS | |-------------------------------------|----------|---------------------|------|-------|-------|-------| | Drain Cut-Off Current | ldss | Vds=20V, Vgs= 0V | - | - | 10 | μΑ | | Gate-Source Leak Current | Igss | Vgs= ±8V, Vds= 0V | ı | - | ±10 | μΑ | | Gate-Source Cut-Off Voltage | Vgs(off) | Id= 1mA, Vds= 10V | 0.5 | - | 1.2 | V | | | | Id= 2A, Vgs= 4.5V | - | 0.037 | 0.050 | Ω | | Drain-Source On-State Resistance *1 | Rds(on) | Id= 2A, Vgs= 2.5V | - | 0.05 | 0.07 | Ω | | | | Id= 0.5A, Vgs= 1.5V | ı | 0.1 | 0.15 | Ω | | Forward Transfer Admittance *1 | Yfs | ld= 2A, Vds= 10V | - | 10 | - | S | | Body Drain Diode
Forward Voltage | Vf | If= 4A, Vgs= 0V | - | 0.85 | 1.1 | V | ^{*1} Effective during pulse test. ### **Dynamic Characteristics** Ta = 25°C | PARAMETER | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | UNITS | |----------------------|--------|-----------------------------|------|------|------|-------| | Input Capacitance | Ciss | Vds= 10V, Vgs=0V
f= 1MHz | | 390 | | pF | | Output Capacitance | Coss | | - | 210 | - | pF | | Feedback Capacitance | Crss | | - | 90 | - | pF | ### **Switching Characteristics** Ta = 25°C | PARAMETER | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | UNITS | |---------------------|----------|----------------------------|------|------|------|-------| | Turn-On Delay Time | td (on) | Vgs= 5V, Id=2A
Vdd= 10V | ı | 10 | ı | ns | | Rise Time | tr | | ı | 15 | ı | ns | | Turn-Off Delay Time | td (off) | | - | 85 | | ns | | Fall Time | tf | | - | 45 | - | ns | ### Thermal Characteristics | PARAMETER | SYMBOL | CONDITIONS | MIN. | TYP. | MAX. | UNITS | |---------------------------------------|------------|----------------------------|------|------|------|-------| | Thermal Resistance (Channel-Ambience) | Rth (ch-a) | Implement on a ceramic PCB | - | 62.5 | - | °C/W | ### **■TYPICAL PERFORMANCE CHARACTERISTICS** # ■TYPICAL PERFORMANCE CHARACTERISTICS (Continued) #### (8) Switching Time vs. Drain Current (9) Gate-Source Voltage vs. Gate Charge #### (10) Reverse Drain Current (11) Standardized transition Thermal Resistance vs. Pulse Width - The products and product specifications contained herein are subject to change without notice to improve performance characteristics. Consult us, or our representatives before use, to confirm that the information in this catalog is up to date. - 2. We assume no responsibility for any infringement of patents, patent rights, or other rights arising from the use of any information and circuitry in this catalog. - 3. Please ensure suitable shipping controls (including fail-safe designs and aging protection) are in force for equipment employing products listed in this catalog. - 4. The products in this catalog are not developed, designed, or approved for use with such equipment whose failure of malfunction can be reasonably expected to directly endanger the life of, or cause significant injury to, the user. - (e.g. Atomic energy; aerospace; transport; combustion and associated safety equipment thereof.) - Please use the products listed in this catalog within the specified ranges. Should you wish to use the products under conditions exceeding the specifications, please consult us or our representatives. - 6. We assume no responsibility for damage or loss due to abnormal use. - 7. All rights reserved. No part of this catalog may be copied or reproduced without the prior permission of Torex Semiconductor Ltd. #### TOREX SEMICONDUCTOR LTD.