Available at Digi-Key www.digikey.com

125 Series FTS125-CTV-010.0 MHz GPS Disciplined Oscillators

2111 Comprehensive Drive
Aurora, Illinois 60505
Phone: 630-851-4722
Fax: 630-851-5040
www.conwin.com

D

A

П

A

S

Ξ

Ξ

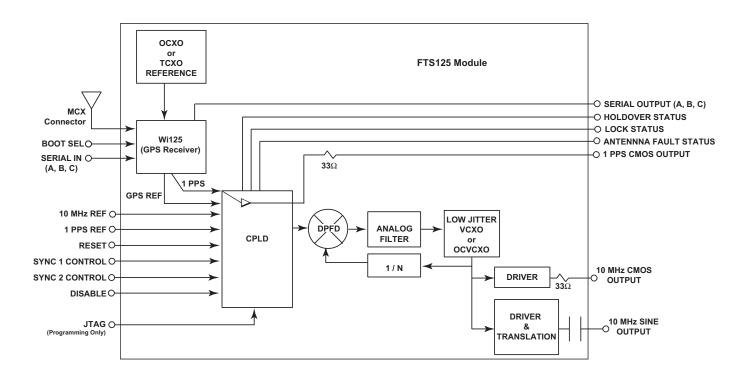
T

General Description

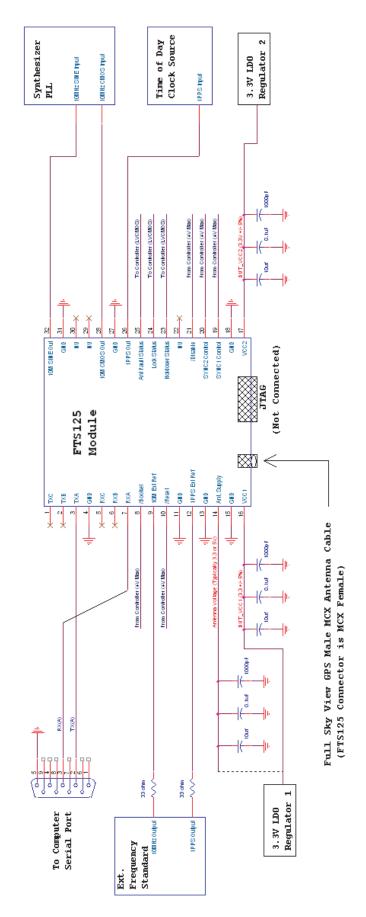
The FTS125-CTV-010.0 MHz Frequency and Time Standard module is a TCXO GPS driven, mixed-signal phase lock loop, providing a 1 PPS CMOS output from a Connor-Winfield GPS timing receiver and generating a 10 MHz CMOS and a 10 MHz SINE output from an intrinsically low jitter voltage controlled crystal oscillator. The FTS125 can lock to a 10 MHz reference derived from the on-board GPS receiver or an external 10 MHz reference or to an external 1 PPS reference. Alarms are provided to indicate Loss-of-Lock, Holdover, and Antenna Fault. The on-board GPS receiver requires an outdoor mounted GPS antenna for the best stability and consistent performance.

The mode control inputs are used to manually switch between references and/or holdover. The user application should monitor the alarm outputs and manually switch modes as needed.

Serial I/O lines provide access to the NMEA messages from the GPS receiver (referenced in the Connor-Winfield's Wi125 User Manual. Contact Connor-Winfield Sales for a copy). The serial I/O lines can be used to access GPS timestamp information, or to verify that the receiver has recovered from an alarm condition. The reset is used to reset the GPS receiver (if needed).


Features

- Phase locked 10 MHz output
- 1 PPS output
- 3 selectable references: GPS, External 10 MHz or External 1 PPS
- Holdover
- Three alarm outputs. (Loss-of-Lock, Holdover and Antenna Fault)
- Serial input and output ports (GPS receiver)
- Master reset
- +3.3 Volt power supply
- Commercial Temp (0-70° C)
- Meets ITU-T G.811 Wander Generation Mask
- Meets ETSI-PRC Wander Generation Mask (with OCXO reference)
- MCX GPS Antenna Connection
- Fixed Position Unit
- Package: 32-pin Through-Hole
- Physical Dimensions: 4.15" x 3.3" x 0.718" (105.41mm x 83.82mm x 18.22mm)


Bulletin	SG185
Revision	02
Date	03 Jan 12
Issued By	ENG

Functional Block Diagram

Figure 1

Pin Description

Table 1

Pin #	Pin Name	Description
1	TXC	RS-232 communication transmit signal for UART2 (Optional)
2	TXB	RS-232 communication transmit signal for UART1 (Optional)
3	TXA	RS-232 communication transmit signal for UARTO (Optional)
4	GND	
5	RXC	RS-232 communication receive signal for UART2 (Optional)
6	RXB	RS-232 communication receive signal for UART1 (Optional)
7	RXA	RS-232 communication receive signal for UART0 (Optional)
8	*Bootsel	Normally HIGH - Only pulled low for RS-232 re-programming of GPS software. Default state is pulled high internally.
9	10 MHz Ref Input	External LVCMOS 10 MHz reference (Optional). Default state is pulled high internally.
10	*Reset	Hardware Reset for the GPS timing circuitry. Pull low to reset. Default state is pulled high internally.
11	GND	
12	1 PPS Ref Input	External LVCMOS 1 PPS reference (Optional). Default state is pulled high internally.
13	GND	
14	Antenna Supply Voltage	Antenna Supply Voltage. Limit continuous current to 45mA Max.
15	GND	
16	VCC1	Supply voltage for GPS timing circuitry.
17	VCC2	Supply voltage for noise clean-up and interfacing circuitry.
18	GND	
19	SYNC1 Control	Lock mode control signal 1. See Table 4 for functional description. Default state is pulled high internally.
20	SYNC2 Control	Lock mode control signal 2. See Table 4 for functional description. Default state is pulled high internally.
21	*Disable	Open/High = enabled outputs. Pull low to disable the 10 MHz CMOS and SINE outputs. Default state is pulled high internally.
22	Unused	
23	Holdover Status	High = Unit is in Holdover
24	Lock Status	High = Unit is locked to selected reference.
25	Antenna Fault Status	High = A fault has been detected on Pin 14 (Antenna Supply Voltage)
26	1 PPS CMOS Output	1 PPS CMOS output provided by the Wi125
27	GND	
28	10 MHz CMOS Output	10 MHz low jitter CMOS output
29	Unused	
30	Unused	
31	GND	
32	10 MHz SINE Output	10 MHz AC coupled low jitter SINE output

Absolute Maximum Rating

Table 2

Symbol	Parameter	Minimum	Maximum	Units	Notes
V _{cc}	Power Supply Voltage	-0.3	3.7	Volts	1
V _{IN}	Input Voltage	-0.3	4.6	Volts	1
V _{PREAMP}	Antenna Supply Voltage	2.7	13.2	Volts	1
T _s	Storage Temperature	-30	80	°C	1

Operating Specifications

Table 3

Symbol	Parameter	Minimum	Nominal	Maximum	Units	Notes
V _{cc} 1	Supply Voltage 1	3.135	3.3	3.465	V	
I _{cc} 1	Supply Current 1 with TCXO		.200	.300	А	
V _{cc} 2	Supply Voltage 2	3.135	3.3	3.465	V	2
I _{cc} 2 T _o	Supply Current 2 with VCXO/TCVCX	0	.038	.060	А	
T_{o}	Temperature Range	0		70	°C	
t_{JTOL}	Input Jitter Tolerance	30			ns	
t _{AQ_GPS}	GPS Input Acquisition Time		120		sec	3
t _{AQ_EXT}	External Input Acquisition Time		90		sec	3
		Os	cillator Perform	ance		
PLL Op	tion:		VCXO (CT	ΓV))		
F _{CAP}	Capture/Pull-in Range		±50 ppr	m		
F_{BW}	Jitter Filter Bandwidth		6 Hz Tyr	Ο.		
DC	Duty Cycle	45/55%				
RMS	RMS Phase Noise					
	10 Hz - 2 MHz		20 ps Ty			
	12 kHz - 2 MHz		0.5 ps Ty	/p.		
		Holdove	er/Wander Genera	ation Performand	e	4
Referen	ce Option:		Int TCXO (CTV)		
T _{STA}	Temperature Stability		±0.5 pp	m		5
$V_{\rm STA}$	Vcc Stability		0.1 ppn	n		
A _{YEARLY}	Yearly Aging		2 ppm			
	Wander Generation Specification		ITU-T G.8	311		

NOTES

^{1.} Stresses beyond those listed under "Absolute Maximum Rating" may cause permanent damage to the module. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "Operating Specifications" is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

^{2.} Requires external regulation and supply decoupling.

^{3.} Cold Power-up

^{4.} Holdover will be re-calculated with each successful lock. Yearly aging represents 1 continuous year in Holdover.

^{5.} Relative to 25°C.

Table 4

SYNC 1	SYNC 2	Operating Mode
0	0	Force Holdover
0	1	Lock to External 10 MHz reference*
1	0	Lock to External 1 PPS reference
1	1	(Default) Lock to GPS Signal

^{*} Note: Holdover is not supported in this mode; loss of the 10MHz reference will rail the PLL output until the reference returns or another mode is selected.

Input And Output Characteristics

Table 5

LVCMOS Inputs and Outputs

Symbol	Parameter	Minimum	Maximum	Units	Notes
V _{IH}	High Level Input Voltage	1.7	4.0	V	
V _{IL}	Low Level Input Voltage	-0.5	0.8	V	
V _{OH}	High Level Output Voltage	2.4		V	
V _{OL}	Low Level Output Voltage		0.4	V	
C _o	Output Capacitance		10	pF	
		10 MHz Sine Output			

Symbol	Parameter	Typical	Units	Notes
	Load	50	ohms	
	Output Power	9	dB _m	
	Total Harmonic Distortion	2.2	%	

GPS Receiver Specifications

Table 6

Parameter	Specifications	Notes
Acquisition/Tracking Sensitivity	-155dBm/-156dBm	
Acquisition Time:		
Hot Start w/ Network Assist	Outdoor: <2 sec Indoor: (-148dBm) <5 sec	
Stand Alone	Cold: <45 sec Warm: <38 sec Hot: <5 sec Re-acquisition: <1sec (90% confidence)	
Supported Protocols	Network Assist, NMEA 0183	

Reset Generation (I/O pin 10 - RESET)

The power-on-reset for the FTS125 is generated on-board. If it is desired to extend the power-on-reset signal or provide a manual reset of the GPS receiver, pull this signal low.

Table 7

Parameter	Notes
raianicici	110163

The FTS125 antenna connector is an MCX (female)

The antenna supply voltage provided to Pin 14 must be within the range of 2.7 to 13.2V (AMR);

the antenna must be able to operate at this voltage

The antenna's continuous current draw must be <=45mA

The antenna must have a full sky view for optimal receiver performance

An active antenna with a minimum 10dB gain (including cable loss) should be used

Standard 125 Series models are designed for fixed position operation only. Contact Connor-Winfield Sales for mobile application model offerings

Phase Noise

Figure 3

Phase Noise:

Offset Frequency (Hz))	CTV (dBc/Hz)
10	-70
100	-105
1k	-135
10k	-145
100k	-152
1M	-158

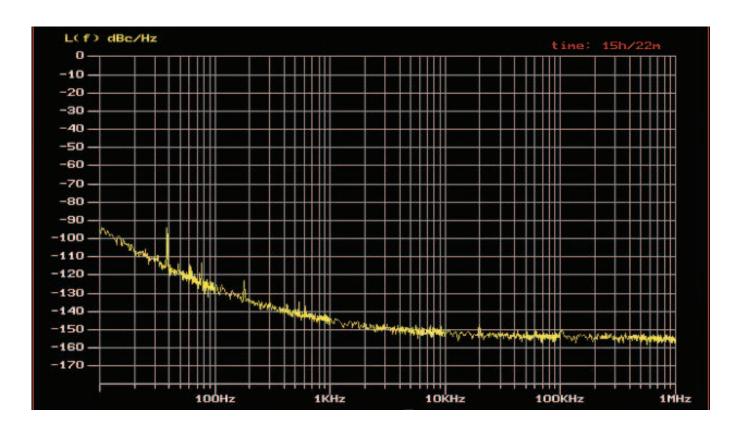
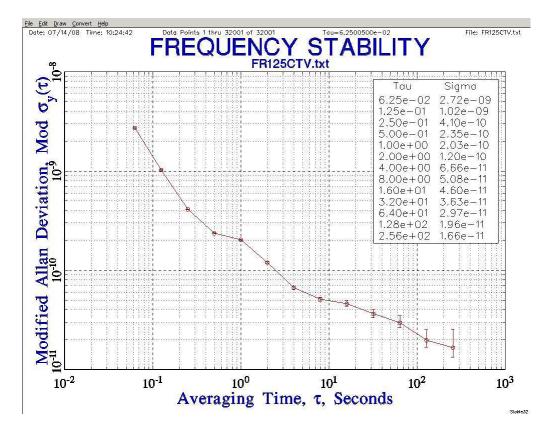
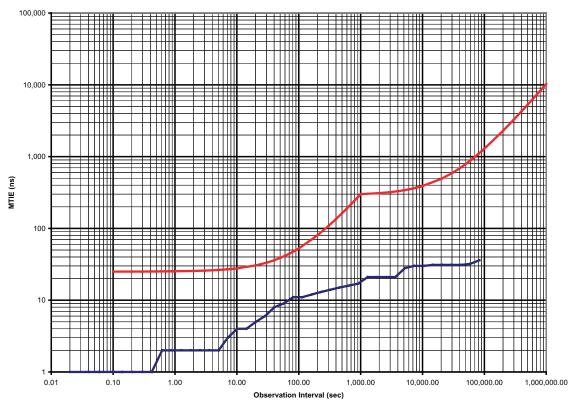
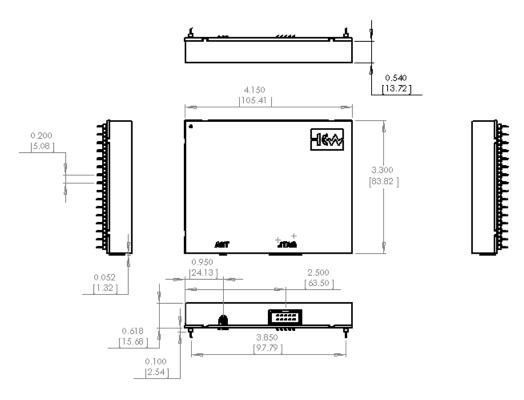
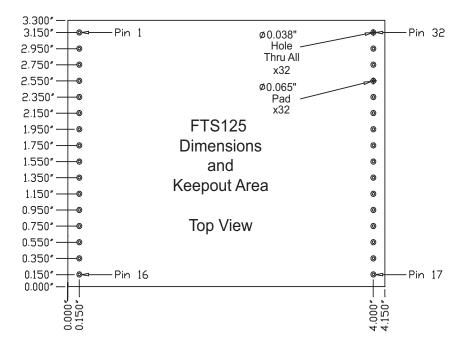




Figure 4

Wander Generation Plot – CTV versus G.811 Wander Generation Mask Figure 5


Date: 01/03/12

Soldering and Cleaning Recommendations


Hand solder, leaded wave solder, and lead-free wave solder processes are recommended for attaching the FTS125 after reflow processes are complete. Since the FTS125 does not have hermetic enclosure, hand cleaning the leads is recommended and the module should not be completely immersed.

Package Dimensions

Figure 6

Recommended Footprint Dimensions Figure 7

2111 Comprehensive Drive
Aurora, Illinois 60505
Phone: 630-851-4722
Fax: 630-851-5040
www.conwin.com

Ordering Information

Ex: FTS125-COO-010.0MHz

FTS125	С	0	0	-010.0M
	Temp Range	Wi125 Reference	PLL Oscillator	Output Frequency
	C = 0-70°C	T = TCXO	V = VCXO	
* CTO Optio	on is not available			

Revision	Date	Note
00	10/28/10	FTS125-CTV for Public Release
01	05/27/11	Block Diagram updated with Wi125 Receiver & Soldering Recommendations
02	01/03/12	Added Package & Dimension Information to Features