

AOZ6115 High Performance, Low R_{ON}, SPST Analog Switch

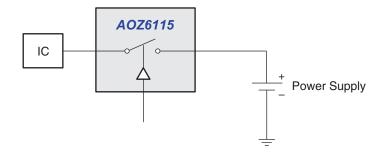
General Description

The AOZ6115 is a high performance single-pole single-throw (SPST), low power, TTL-compatible bus switch.

The AOZ6115 can handle analog and digital signals. Signals with voltages up to V_{CC} (1.65V to 5.5V) can be transmitted in either direction.

When the Select pin is HIGH, A is connected to the output B pin. The path that is open will have a high-impedance state with respect to the output.

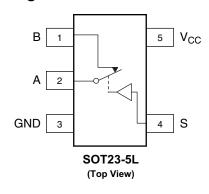
Features


- SOT-23 5-Lead Package
- 1.65V to 5.5V V_{CC} operation
- Low C_{ON}: 18pF

Applications

- Audio and Video Signal Routing
- Battery Operated Equipment
- Communications Circuit
- Relay Replacement
- Power Routing

Typical Application


Ordering Information

Part Number	ber Ambient Temperature Range Package		Environmental		
AOZ6115CI	-40°C to +85°C	SOT-23 5-Lead	RoHS Compliant Green Product		

AOS Green Products use reduced levels of Halogens, and are also RoHS compliant. Please visit www.aosmd.com/web/quality/rohs_compliant.jsp for additional information.

Pin Configuration

Truth Table

Logic S Input	Function
0	No Connection
1	A Connected to B

Absolute Maximum Ratings *Exceeding the Absolute Maximum ratings may damage the device.*

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to + 6V
V _S	Switch Voltage ⁽¹⁾	-0.5V to V _{CC} + 0.5V
V _{IN}	Input Voltage ⁽¹⁾	-0.5V to V _{CC}
I _{IK}	Minimum Input Diode Current	-50mA
I _{SW}	Switch Current	130mA
I _{SWPEAK}	Peak Switch Current (Pulsed at 1ms, <10% Duty Cycle)	260mA
T _{STG}	Storage Temperature Range	-65°C to 150°C
P _D	SOT23-5 Power Dissipation at 85°C ⁽²⁾	180mW
ESD	Human Body Model (JESD22A-114E)	8000V

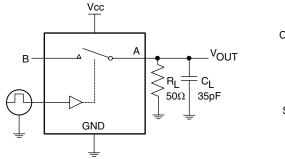
Notes:

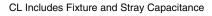
^{1.} Signals on A, or B or S exceeding V+ will be clamped by internal diodes. Limit forward diode current to maximum current ratings.

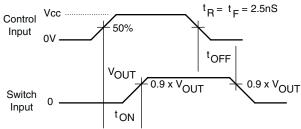
^{2.} All leads welded or soldered to PC Board.

Electrical Characteristics (Continued)
Unless otherwise indicated, specifications indicate a temperature range of -40°C to +85°C

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽¹⁾	Max.	Units
DC CHARA	ACTERISTICS						
V _{IH}	Input Voltage High	$V_{CC} = 2.7V \text{ to } 3.6V$		1.5			٧
		V _{CC} = 4.5V to 5.5V		2.0			1
V _{IL}	Input Voltage Low	$V_{CC} = 2.7V \text{ to } 3.6V$				0.6	٧
		V _{CC} = 4.5V to 5.5V				0.8	1
R _{ON}	On Resistance	V _{CC} = 2.7V, I _{OUT} = 100m	A, B = 1.5V		3.0	4.0	Ω
		V _{CC} = 4.5V, I _{OUT} = 100n	nA, B = 3.5V		2.0	3.0	
R _{FLAT}	On Resistance Flatness	V _{CC} = 4.5V, I _{OUT} = 100m		0.8		Ω	
I _{IN}	Input Leakage Current	V _{IN} = 0V or V _{CC}		-1.0		1.0	μΑ
I _{B(off)}	Off Stage Switch Leakage	V _{CC} = 5.5V, A = 1V, 4.5	V, B = 4.5V, 1V	-100	4	100	nA
I _{A(on)}	On State Switch Leakage	$V_{CC} = 5.5V, A = 1V, 4.5V$	V, B = floating	-20	1	20	nA
POWER SU	JPPLY						
V _{CC}	Power Supply Range		1.65		5.5	٧	
I _{CCQ}	Quiescent Supply Current	$V_{CC} = 5.5V, V_{IN} = 0V \text{ or } V_{IN} = 0$		0.5	1	μA	
I _{CCT}	Increase in I _{CC} per Input	$V_{CC} = 3.6V, V_{IN} = 2.0V$		3.3	10	μA	
		$V_{CC} = 5.5V, V_{IN} = 2.4V$		20	30		
AC CHARA	ACTERISTICS						
t _{ON}	Turn-On Time	$B = 1.5V, R_L = 50\Omega,$	$V_{CC} = 2.7V \text{ to } 3.6V$		20	65	ns
		$C_L = 35pF$	$V_{CC} = 4.5V \text{ to } 5.5V$		10	40]
t _{OFF}	Turn-Off Time	$B = 1.5V, R_L = 50\Omega,$	$V_{CC} = 2.7V \text{ to } 3.6V$		20	30	ns
		$C_L = 35pF$	$V_{CC} = 4.5V \text{ to } 5.5V$		10	20]
Q	Charge Injection	$C_L = 1.0 nF, V_{GE} = 0 V,$	$V_{CC} = 2.7V \text{ to } 3.6V$		1		рC
		$R_{GEN} = 0\Omega$	$V_{CC} = 4.5V \text{ to } 5.5V$		2		<u> </u>
ANALOG S	SWITCH CHARACTERISTICS	3					
OIRR	Off Isolation	$R_L = 50\Omega$, $f = 1MHz$			-70		dB
BW	-3dB Bandwidth	$R_L = 50\Omega$			300		MHz
THD	Total Harmonic Distortion	$V_{CC} = 5V$, $R_L = 600\Omega$, C_l f = 20Hz to 20kHz		0.005		%	
CAPACITA	NCE						
C _{IN}	Control Pin Capacitance	V _{CC} = 0V, f = 1MHz		2		pF	
C _{OFF}	B Port Off Capacitance	V _{CC} = 4.5V, f = 1MHz			7.5		pF
C _{ON}	A Port Capacitance When Switch Enable	V _{CC} = 4.5V, f = 1MHz			18		pF


Note:


1. Typical values:


Page 4 of 9 Rev. 1.8 October 2009 www.aosmd.com

AC Loading and Waveforms

Logic input waveform are inverted for switches with opposite logic sense

Figure 1. Turn-On/Turn-Off Timing

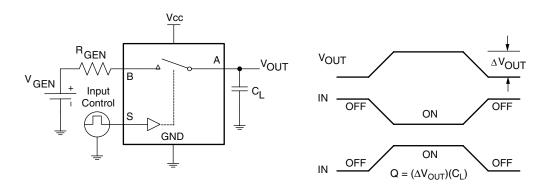


Figure 2. Charge Injection

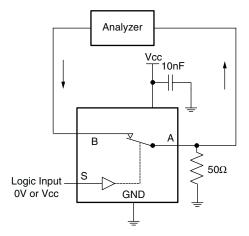
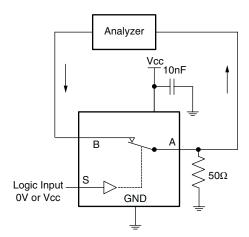



Figure 3. Bandwidth

Figure 4. Harmonic Distortion

AC Loading and Waveforms (Continued)

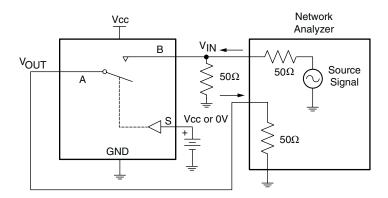
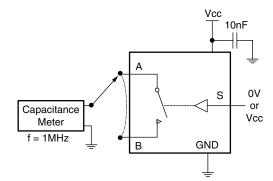
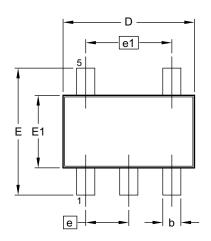
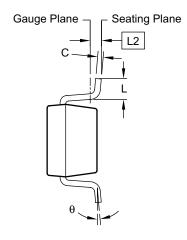
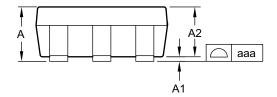
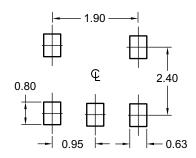


Figure 5. Off Isolation


Figure 6. ON/Off Capacitance Measurement


Rev. 1.8 October 2009 **www.aosmd.com** Page 6 of 9


Package Dimensions, SOT23-5L

RECOMMENDED LAND PATTERN

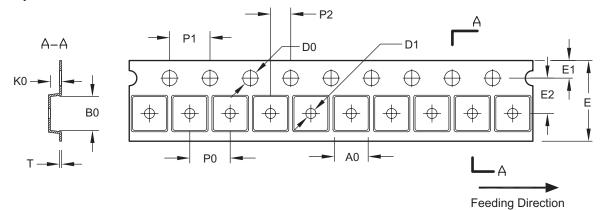
UNIT: mm

Dimensions in millimeters

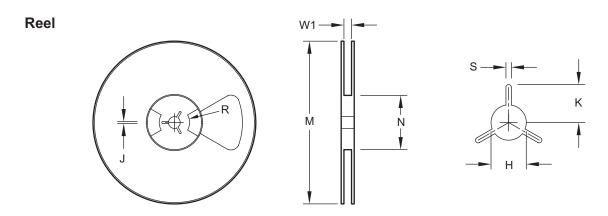
Symbols	Min.	Nom.	Max.		
Α	_	_	1.00		
A1	0.00	_	0.10		
A2	0.70	0.88	0.95		
b	0.35	0.40	0.50		
С	0.10	0.13	0.20		
D	2.80	2.90	3.00		
E	2.60	2.80	3.00		
E1	1.50	1.60	1.70		
е	0.95 BSC				
e1	1.90 BSC				
L	0.30	0.60			
L2	0.25 BSC				
aaa	0.10				
θ	0°	_	8°		

Dimensions in inches

Symbols	Min.	Nom.	Max.						
Α	_	_	0.039						
A1	0.00	_	0.004						
A2	0.028	0.035	0.037						
b	0.014	0.016	0.020						
С	0.004	0.005	0.008						
D	0.110	0.114	0.118						
E	0.102	0.110	0.118						
E1	0.059	0.063	0.067						
е	0.037 BSC								
e1	0.075 BSC								
L	0.012	0.016	0.024						
L2	0.010 BSC								
aaa	0.004								
θ	0°	_	8°						

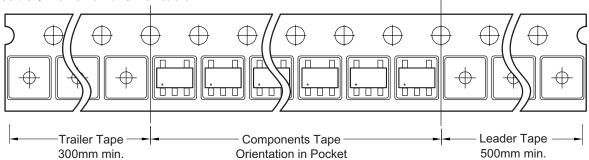

Notes

- 1. Package body sizes exclude mold flash and gate burrs. Mold flash at the non-lead sides should be less than 5 mils.
- 2. Dimension "L" is measured in gauge plane.
- 3. Tolerance $\pm 0.10 \text{mm}$ (4 mil) unless otherwise specified
- 4. Refer to JEDEC MO-193C AB.
- 5. Controlling dimension is millimeter, converted inch dimensions are not necessarily exact.

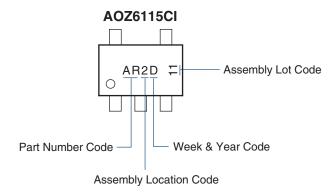

Tape and Reel Dimensions, SOT23-5L

Tape

UNIT: mm


Package	A0	В0	K0	D0	D1	E	E1	E2	P0	P1	P2	Т
SOT-23	3.15	3.20	1.40	1.50	1.00	8.00	1.75	3.50	4.00	4.00	2.00	0.23
5 & 6L LP	±0.10	±0.10	±0.10	±0.05	+0.10/-0.00	±0.30	±0.10	±0.05	±0.10	±0.10	±0.05	±0.03

UNIT: mm


Tape Size	Reel Size	М	N	W1	Н	S	K	R	J
8mm	ø177.8	ø177.8 Max.	55.0 Min.	8.4 +1.50 / -0.0	13.0 +0.5 / -0.2	1.5 Min	10.1 Min.	12.7	4.0 ±0.1

Leader/Trailer and Orientation

Part Marking

This datasheet contains preliminary data; supplementary data may be published at a later date. Alpha & Omega Semiconductor reserves the right to make changes at any time without notice.

LIFE SUPPORT POLICY

ALPHA & OMEGA SEMICONDUCTOR PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- 2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.