

PART NUMBER:

KXD94-2802

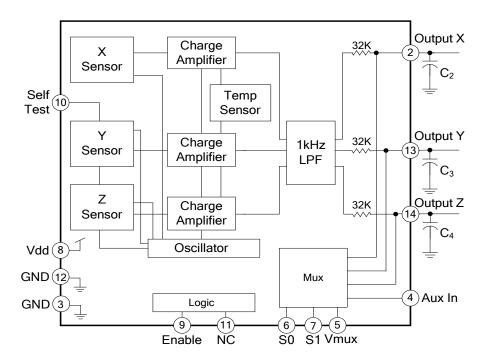
Rev. A Dec 08

00 Th -		-			ΔDDE	20\/E	D BY	DATE
	wood Drive							
	ew York 1				PROD. MGR.	J.	Bergstrom	10/05/09
	-257-1080				CUST. MGR.		S. Patel	10/05/09
Fax: 607	Fax: 607-257-1146			TEST MGR.		J. Chong	12/22/08	
www.kior	ww.kionix.com				VP ENG.		T. Davis	12/22/08
CON #	PCN#	REV	PG#	DEVICION	N DESCRIPTION	T	DATE	DEVID DV
ECN#	PCN#		PG #	Initial Release	DESCRIPTION		DATE 12/22/08	REV'D BY
		-			Corrected Table 4 pin	`		
		Α		Updated approval list. description for AUX Ir).	ı	10/05/09	J. Bergstrom

"Kionix" is a registered trademark of Kionix, Inc. Products described herein are protected by patents issued or pending. No license is granted by implication or otherwise under any patent or other rights of Kionix. The information contained herein is believed to be accurate and reliable but is not guaranteed. Kionix does not assume responsibility for its use or distribution. Kionix also reserves the right to change product specifications or discontinue this product at any time without prior notice. This publication supersedes and replaces all information previously supplied.

© 2008 Kionix, Inc. - All rights reserved

PART NUMBER:


KXD94-2802

Rev. A Dec 08

Product Description

The KXD94-2802 is a silicon micromachined accelerometer with a full-scale output range of $\pm 10g$ (± 98 m/s²). The sense element is fabricated using Kionix's proprietary plasma micromachining process technology. Acceleration sensing is based on the principle of a differential capacitance arising from acceleration-induced motion of the sense element, which further utilizes common mode cancellation to decrease errors from process variation, temperature, and environmental stress. The sense element is hermetically sealed at the wafer level by bonding a second silicon lid wafer to the device using a glass frit. A separate ASIC device packaged with the sense element provides signal conditioning and self-test. The accelerometer is delivered in a 5 x 5 x 1.2 mm DFN plastic package operating from a 2.5 – 5.25V DC supply.

Figure 1. Functional Diagram

PART NUMBER:

KXD94-2802

Rev. A Dec 08

Product Specifications

Table 1. Mechanical

(specifications are for operation at $V_{dd} = 5.0 \text{ V}$ and $T = 25^{\circ}\text{C}$ unless stated otherwise)

Parameters		Units	Min	Typical	Max
Operating Temperature Range		°C	-40	-	85
Zero-g Offset	!	V	2.45	2.50	2.55
Zero-g Offset Variation from RT over Temp.		mg/ºC		±1.0	
Sensitivity	!	mV/g	193	200	207
Sensitivity Variation from RT over Temp.		%/°C		±0.01	
Offset Ratiometric Error (V _{dd} = 5.0V ± 5%)		%		±0.2 (xy) ±0.1 (z)	
Sensitivity Ratiometric Error (V _{dd} = 5.0±5%)		%		±1.6 (xy) ±0.2 (z)	
Non-Linearity		% of FS		0.1	
Cross Axis Sensitivity		%		2.0	
Self Test Output change on Activation		g		6.5 (xy) 3.6 (z)	
Bandwidth (-3dB) ¹		Hz		800	
Noise Density (on filter pins)		μg / √Hz		100	

Notes:

1. Internal 1 kHz low pass filter. Lower frequencies are user definable with external capacitors.

Table 2. Electrical

(specifications are for operation at $V_{dd} = 5.0 \text{ V}$ and $T = 25^{\circ}\text{C}$ unless stated otherwise)

Parameters			Units	Min	Typical	Max
Supply Voltage (V _{dd})	Operating		V	2.5	5.0	5.25
Current Consumption	Operating	!	mA	0.90	1.20	1.50
Current Consumption	Standby		μΑ	-	-	5
Input Voltage for Logic Low ¹			V	-	-	0.2 * V _{dd}
Input Voltage for Logic High ¹			V	0.8 * V _{dd}	-	-
Analog Output Resistance(Rout)			kΩ	24	32	40

Notes:

- 1. The voltage level required for enabling or disabling self-test function or selecting multiplexer output.
- 2. Special Characteristics are designated with '!'.

PART NUMBER:

KXD94-2802

Rev. A Dec 08

Table 3. Environmental

Paran	Units	Min	Target	Max	
Supply Voltage (V _{dd})	Absolute Limits	V	-0.3	-	7.0
Maximum Operating T	°C	-40	-	125	
Storage Temperature	°C	-55	-	150	
Mech. Shock (powered	g	-	-	5000 for 0.5ms	
ESD HBM		V	-	-	3000

Caution: ESD Sensitive and Mechanical Shock Sensitive Component, improper handling can cause permanent damage to the device.

The QFN plastic package conforms to European Union Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment (RoHS).

Soldering

Soldering recommendations available upon request or from www.kionix.com.

PART NUMBER:

KXD94-2802

Rev. A Dec 08

Application Schematic

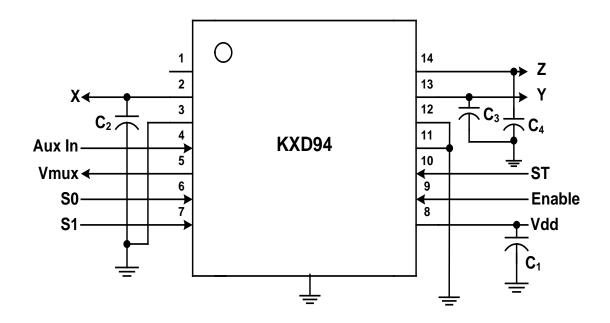


Table 4. KXD94 Pad Descriptions

Pad	Name	Description
1	NC	Not Connected Internally (can be connected to Vdd or Gnd)
2	X output	Analog output of the x-channel. Optionally, a capacitor (C2) placed between this pin and ground will form a low pass filter.
3	GND	Ground
4	Aux In	Auxillary input- ground if not used
5	VMUX	VMUX output – buffered analog output for X channel
6	S0	MUX selector 0 (See Output Select Table). Connect to Vdd or Ground if not used.
7	S1	MUX selector 1 (See Output Select Table). Connect to Vdd or Ground if not used.
8	Vdd	The power supply input. Decouple this pin to ground with a 0.1uF ceramic capacitor (C ₁).
9	Enable	Enable: High - Normal operation; Low - Device is in standby, power down mode
10	ST	Self Test. The output of a properly functioning part will increase when Vdd is applied to the self-test pin. (See Table 2)
11	NC	Not Connected Internally (can be connected to Vdd or Gnd)
12	GND	Ground
13	Y output	Analog output of the y-channel. Optionally, a capacitor (C ₃) placed between this pin and ground will form a low pass filter.
14	Z output	Analog output of the z-channel. Optionally, a capacitor (C ₄) placed between this pin and ground will form a low pass filter.
	Center pad	Ground

PART NUMBER:

KXD94-2802

Rev. A Dec 08

Application Design Equations

 The internal 1kHz low pass filter determines the bandwidth. The user can lower the bandwidth by placing filter capacitors connected from pin 2, 13, and 14 to ground. The response is single pole. Given a desired bandwidth, f_{BW}, the filter capacitors are determined by:

$$C_2 = C_3 = C_4 = \frac{4.97 \times 10^{-6}}{f_{BW}}$$

2. The response time (RT) is determined by the equation:

$$RT = 5 \times R_{\text{int}} \times C_{\rho \gamma t}$$

 R_{int} is the 32K Ω internal resistor and C_{ext} is the external resistor C_{2} , C_{3} , or C_{4} .

Using the Multiplexed Output of the KXD94

Multiplexer Data Select

The KXD94 features an integrated 4-channel multiplexer. This feature reduces system MCU requirements to only 1 ADC and 2 digital I/O's. The KXD94 uses two select inputs (S0, S1) to control the data flow from Vmux. When a microprocessor toggles the select inputs, the desired output is attained based on the select table. See Table 2 for Logic 0 and Logic 1 voltage levels.

Table 5. Output Select Table

S 1	S0	Vmux		
0	0	X Output		
0	1	Z Output		
1	0	Y Output		
1	1	Aux. In		

PART NUMBER:

KXD94-2802

Rev. A Dec 08

Data Sampling Rate

When operating in its multiplexed mode, the KXD94 has the ability to achieve very high data sampling rates. Internally, the sensor elements (X, Y, and Z) are sequentially sampled in a "round robin" fashion at a rate of 32KHz per axis. Note that this is a differential capacitance sampling of each sensor element, which stores an analog voltage on the filter cap for each axis. Combine this high sensor element sampling rate with the short 5µS settling time of the integrated multiplexer, and the user can achieve a performance very close to that of the 3 separate analog outputs. This is more than sufficient to eliminate any aliasing in the final application since the KXD94 will be operating with a typical bandwidth of ~50Hz and a maximum of 1000Hz.

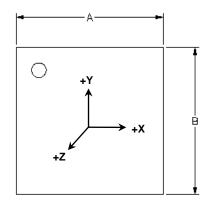
Test Specifications

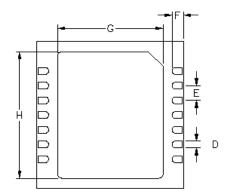
Special Characteristics:

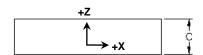
These characteristics have been identified as being critical to the customer. Every part is tested to verify its conformance to specification prior to shipment.

Table 6. Test Specifications

Parameter		Specification	Test Conditions		
Zero-g Offset @ RT		2.50 ± 0.05 V	25° C, $V_{dd} = 5.0$ V		
Sensitivity @ RT		$200 \pm 7 \text{ mV/g}$	25° C, $V_{dd} = 5.0$ V		
Current Consumption	Operating	$0.9 \le I_{dd} \le 1.5 \text{ mA}$	25° C, $V_{dd} = 5.0$ V		




PART NUMBER:


KXD94-2802

Rev. A Dec 08

Package Dimensions and Orientation: 5 x 5 x 1.2mm 14 pin DFN

All dimensions and tolerances conform to ASME Y14.5M-1994

Dimension		mm		inch			
Dimension	Min	Nom	Max	Min	Nom	Max	
Α		5.00			0.197		
В		5.00			0.197		
С	1.10	1.20	1.30	0.043	0.047	0.051	
D	0.18	0.23	0.28	0.007	0.009	0.011	
E		0.50			0.020		
F	0.35	0.40	0.45	0.014	0.016	0.018	
G	3.50	3.60	3.70	0.138	0.142	0.146	
Н	4.20	4.30	4.40	0.165	0.169	0.173	

PART NUMBER:

KXD94-2802

Rev. A Dec 08

When device is accelerated in +X, +Y, or +Z direction, the output will increase.

Static X/Y/Z Output Response versus Orientation to Earth's surface (1g):

Position	1	2	3	4	5	6
Diagram					Тор	Bottom
					Bottom	Тор
X	2.50 V	2.70 V	2.50 V	2.30 V	2.50 V	2.50 V
Υ	2.70 V	2.50 V	2.30 V	2.50 V	2.50 V	2.50 V
Z	2.50 V	2.50 V	2.50 V	2.50 V	2.70 V	2.30 V
X-Polarity	0	+	0	•	0	0
Y-Polarity	+	0	-	0	0	0
Z-Polarity	0	0	0	0	+	-

Earth's Surface