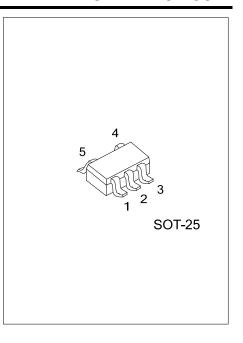
Preliminary

LINEAR INTEGRATED CIRCUIT

MONOLITHIC IC 82XX SERIES

DESCRIPTION

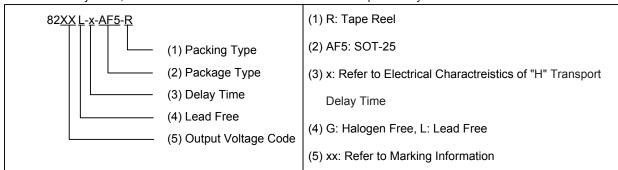

The normal operation of the UTC 82XX is that while the power is turned on or interrupted, detect power supply voltage and then reset the system accurately.

The internal circuits of the UTC 82XX include a built-in fixed delay time generating circuit. With a counter timer using an analog/digital hybrid circuit, the UTC 82XX as new low reset type system reset ICs expands the delay time series.

These ICs can be used in a variety of CPU systems and other logic systems.

FEATURES

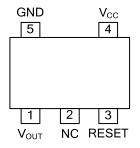
- * Internal Fixed Delay Time Setting by Counter Timer
- * Grate Delay Time Temperature Characteristics:±800ppm/°C
- * Operating Limit Voltage as 0.65V(Typ.)
- * Hysteresis Voltage Provided: 50mV(Typ.)
- * Circuit Current While On Iccl=300µA(Typ.)
- * Circuit Current While Off ICCH=200µA(Typ.)



ORDERING INFORMATION

Ordering Nun	nber	Doolsono	Packing	
Lead Free	Halogen Free	Package		
82XXL-x-AF5-R	82XXG-x-AF5-R	SOT-25	Tape Reel	

Notes: xx: Output Voltage, refer to Marking Information.


x: Delay Time, refer to Electrical Characteristics of "H" Transport Delay Time

MARKING INFORMATION

PACKAGE	VOLTAGE CODE	MARKING
SOT-25	25:2.5V 27:2.7V 2K:2.93V	Delay Time Voltage Code XXXX L: Lead Free G: Halogen Free

■ PIN CONFIGURATION

■ PIN DESCRIPTION

PIN NO.	PIN NAME	DESCRIPTION
1	V _{OUT}	Output pin
2	NC	Connected nothing
3	RESET	Reset control pin
4	V _{CC}	Supply voltage
5	GND	Ground

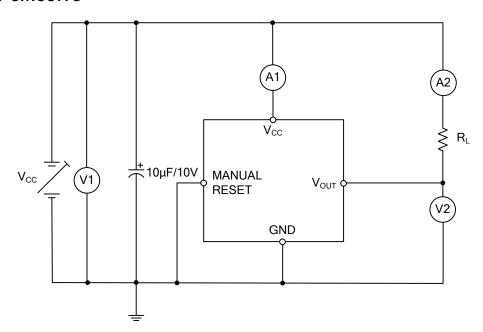
■ BLOCK DIAGRAM

■ ABSOLUTE MAXIMUM RATING (T_A=25°C)

PARAMETER	SYMBOL	RATINGS	UNIT
Power Supply Voltage	V _{CC}	-0.3~+10	V
Manual Reset Input Voltage	V_{RESET}	-0.3~+10	V
Power Dissipation	P_D	400	mW
Operating Temperature	T _{OPR}	-20~+75	°C
Storage Temperature	T _{STG}	-40~+125	°C

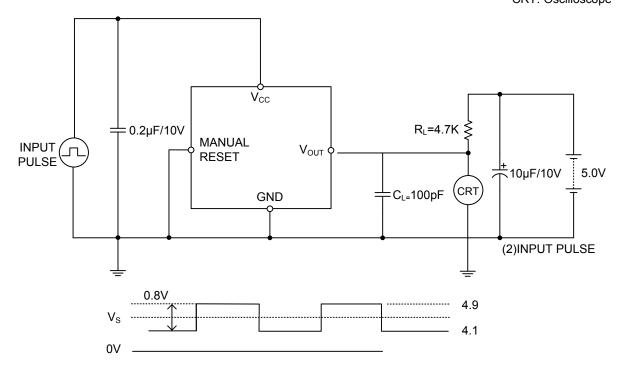
Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

■ ELECTRICAL CHARACTERISTICS (T_A=25°C, Unless otherwise specified)


V_S=2.5V~2.93V

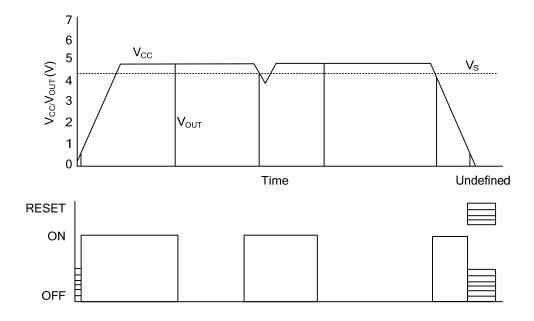
PARAMETER		SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
Detection Voltage		Vs	$V_{OL} \le 0.4V$, $V_{CC} = H \rightarrow L$, $R_L = 470\Omega$ (See Test Circuit 1)		V _S -0.15V	Vs	V _S +0.15V	V	
Low-Level Output Voltage		V _{OL}	$V_{CC}=V_{S(min)}$ -0.05V, R_L =470 Ω (See Test Circuit 1)		0.1	0.4	٧		
Operating Pow	er Supply Vo	ltage	V _{OPL}	R _L =4.7kΩ, V _{OL} ≤0.4V		0.65	0.85	V	
Hysteresis Voltage		ΔVs	V _{CC} =L→H→L , R _L =470Ω (See Test Circuit 1)	30	50	100	mV		
Detection Voltage Temperature Coefficient		$\frac{V_S}{\Delta T}$	R_L =470 Ω , T_A =-20°C~+75°C (See Test Circuit 1)		±0.01		%/°C		
Output Leakage Current		I _{OH}	V _{CC} =10V (See Test Circuit 1)				±0.1	μΑ	
Circuit Current		On	I _{CCL}	$V_{CC} = V_{S(MIN)} - 0.05V, R_L = \infty$			300	600	μΑ
(See Test Circ	uit 1)	Off	I _{CCH}	$V_{CC}=V_{S(TYP)}/0.85V, R_{L}=\infty$			200	350	μΑ
"H" Transport Delay Time		t _{PLH}	D. =4 7KO C. =100PE (Note 1)	P Q	30 60	50 100	75 150	mS mS	
				R	120	200	300	mS	
				S	240	400	600	mS	
				Ī	Т	480	800	1200	mS
"L" Transport Delay Time		t _{PHL}	R _L =4.7kΩ, C _L =100PF (Note 1) (See Test Circuit 2)			10		μS	
Output Current While on 1		I _{OL1}	V_{CC} =VS min0.05V, R _L =0 Ω (See Test Circuit 1)		8			mA	
Output Current While on 2		I _{OL2}	T_A =-20°C ~+75°C, R_L =0 Ω (Note 2) (See Test Circuit 1)		6			mA	
Pin Reset	Input High \	/oltage	V_{RESH}			2.0			V
	Input High (Current	I _{RESH}	V _{RESET} =2V				80	μΑ
	Input Low V	oltage	V_{RESL}					0.8	V

Notes: 1. t_{PLH} : V_{CC} = $(V_{S(TYP)}$ -0.4V) \rightarrow $(V_{S(TYP)}$ +0.4V) t_{PHL} : V_{CC} = $(V_{S(TYP)}$ +0.4V) \rightarrow $(V_{S(TYP)}$ -0.4V)

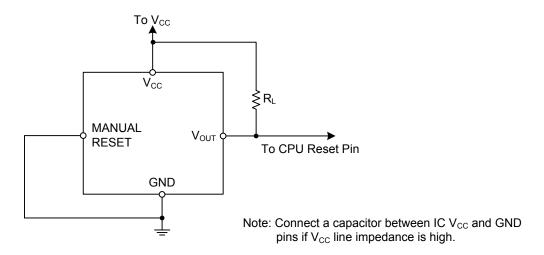

- 2. $V_{CC} = V_{S(MIN)} 0.15V$
- 3. V_{OUT} pin is low when manual reset pin is high. V_{OUT} pin is high when manual reset pin is low.

■ TEST CIRCUITS

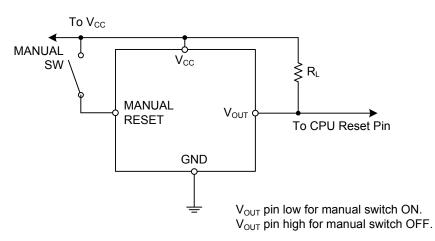
Test Circuit 1


A: DC ammeter V: DC voltmeter CRT: Oscilloscope

Note Input model is an example for 82XX

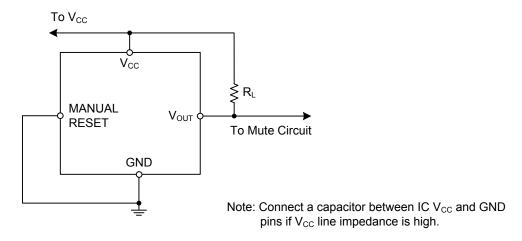

Test Circuit 2

■ TIMING CHART



■ TYPICAL APPLICATION CIRCUITS

1. Normal hard reset



2. Manual reset

Note: Connect a capacitor between IC V_{CC} and GND pins if V_{CC} line impedance is high.

3. Mute circuit

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

