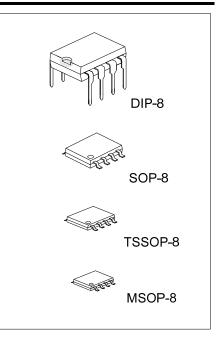


LM393

LINEAR INTEGRATED CIRCUIT

DUAL DIFFERENTIAL COMPARATOR

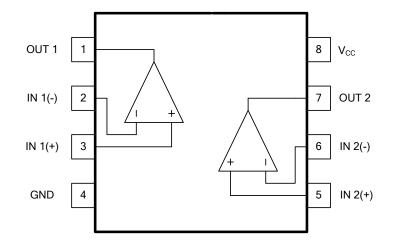

DESCRIPTION

The UTC **LM393** consists of two independent voltage comparators, designed specifically to operate from a single power supply over a wide voltage range.

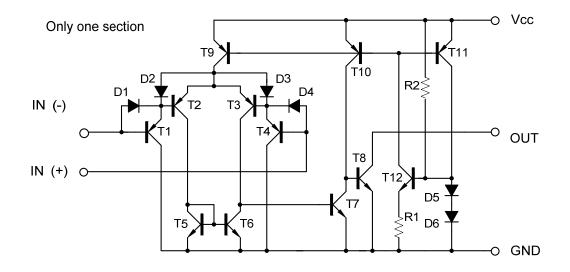
FEATURES

- * Single or dual supply operation.
- * Wide operating supply range
- (V_{CC}=2V ~ 36V or $\pm 1 \sim \pm 18V$)
- * Input common-mode voltage includes ground.
- * Low supply current drain I_{CC}=0.8mA (Typical).
- * Low input bias current I_{BIAS}=25nA (Typical).
- * Output compatible with TTL, DTL, and CMOS logic system.

ORDERING INFORMATION



Ordering Number		Daakaga	Decking	
Lead Free Plating	Halogen-Free	Package	Packing	
LM393L-D08-T	LM393G-D08-T	DIP-8	Tube	
LM393L-S08-R	LM393G-S08-R	SOP-8	Tape Reel	
LM393L-P08-R	LM393G-P08-R	TSSOP-8	Tape Reel	
LM393L-SM1-R	LM393G-SM1-R	MSOP-8	Tape Reel	


LM393 <u>L</u> - <u>D08</u> -T (1) Packing Ty (2) Package T	(2) D08: DIP-8, S08: SOP-8, P08: TSSOP-8, SM1: MSOP-8
(3) Lead Platin	g (3) L: Lead Free, G: Halogen Free

LM393

PIN DESCRIPTION

BLOCK DIAGRAM

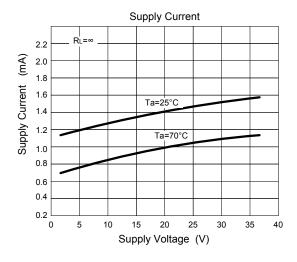
ABSOLUTE MAXIMUM RATINGS

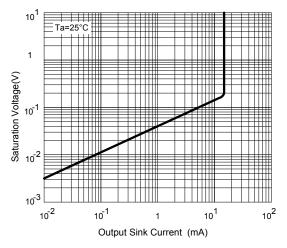
PARAMETER		SYMBOL	RATINGS	UNIT
Supply Voltage		V _{cc}	±18 or 36	V
Differential Input Voltage		V _{I(DIFF)}	±36	V
Input Voltage	_	V _{IN}	-0.3 ~ +36	V
Power Dissipation	DIP-8	- P _D	600	mW
	SOP-8		420	mW
	TSSOP-8		350	mW
	MSOP-8		300	mW
Operating Temperature Range		T _{OPR}	-20 ~ +85	°C
Storage Temperature Range		T _{STG}	-65 ~ +150	°C

Note: Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

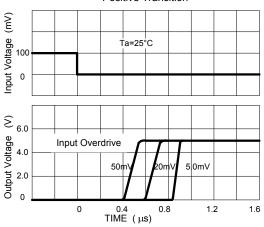
ELECTRICAL CHARACTERISTICS

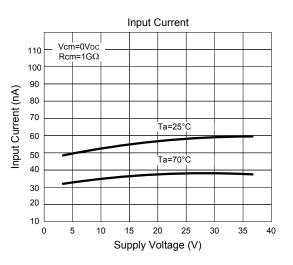
(V_{CC}=5.0V, T_A=25°C, All voltage referenced to GND unless otherwise specified)

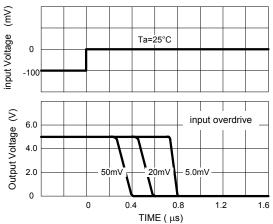

PARAMETER	SYMBOL	TEST CONDITIONS	MIN	TYP	MAX	UNIT
Input Offset Voltage	$V_{I(OFF)}$	V _{CM} =0V toV _{CC} -1.5V V _{O(P)} =1.4V, R _S =0Ω		1.0	5.0	mV
Output Saturation Voltage	V _{SAT}	V _I (-)>1V, V _I (+)=0V, I _{SINK} =4mA		160	400	mV
Input Common Mode Voltage	V _{I(CM)}	V _{CC} =30V	0		V _{CC} -1.5	V
Large Signal Voltage Gain	Gv	V_{CC} =15V, $R_L \ge 15K\Omega$	50	200		V/mV
Power Supply Current	I _{CC}	R _L =∞, V _{CC} =30V		0.8	2.5	mA
		R _L =∞		0.6	1.0	mA
Input Offset Current	I _{I(OFF)}			5	50	nA
Input Bias Current	I _{I(BIAS)}			65	250	nA
Output Sink Current	I _{O(SINK)}	V _I (-)>1V, V _I (+)=0V, Vo(p)<1.5	/ 6	18		mA
Output Leakage Current	I _{O(LEAK)}	Vo(p)= 5V		0.1		nA
		$V_{l}(+)=1V, V_{l}(-)=0$ $V_{0}(p)=30V$,		1.0	μA
Large Signal Response Time	t _R	V _{IN} =TTL logic wing V _{REF} =1.4V, V _{RL} =5V, R _L =5.1kΩ		350		ns
Response Time	t _R	V_{RL} =5V, R_{L} =5.1k Ω		1400		ns


LM393

LINEAR INTEGRATED CIRCUIT


TYPICAL CHARACTERISTICS





Reponse Time for Various Input Overdrive Positive Transition

Reponse Time for Various Input Overdrive Negative Transition

UTC assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all UTC products described or contained herein. UTC products are not designed for use in life support appliances, devices or systems where malfunction of these products can be reasonably expected to result in personal injury. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner. The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed without notice.

