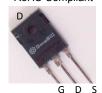


Normally – OFF Silicon Carbide Junction Transistor


$\mathbf{V}_{ extsf{DS}}$	=	1200 V
$V_{\text{DS(ON)}}$	=	1.4 V
I_D	=	10 A
$R_{\text{DS(ON)}}$	=	140 mΩ

Features

- 175 °C maximum operating temperature
- Temperature independent switching performance
- Gate oxide free SiC switch
- Suitable for connecting an anti-parallel diode
- · Positive temperature coefficient for easy paralleling
- Low gate charge
- · Low intrinsic capacitance

Package

RoHS Compliant

TO-247AB

Advantages

- · Low switching losses
- Higher efficiency
- High temperature operation
- · High short circuit withstand capability

Applications

- Down Hole Oil Drilling, Geothermal Instrumentation
- Hybrid Electric Vehicles (HEV)
- Solar Inverters
- Switched-Mode Power Supply (SMPS)
- Power Factor Correction (PFC)
- Induction Heating
- Uninterruptible Power Supply (UPS)
- Motor Drives

Maximum Ratings unless otherwise specified

Parameter	Symbol	Conditions	Values	Unit
Drain – Source Voltage	V_{DS}	V _{GS} = 0 V	1200	V
Continuous Drain Current	I _D	T _{C,MAX} = 95 °C	10	А
Gate Peak Current	I_{GM}		10	Α
Turn-Off Safe Operating Area	RBSOA	T_{VJ} = 175 °C, I_{G} = 1 A, Clamped Inductive Load	$I_{D,max} = 10$ $\emptyset V_{DS} \le V_{DSmax}$	Α
Short Circuit Safe Operating Area	SCSOA	T_{VJ} = 175 °C, I_G = 1 A, V_{DS} = 800 V, Non Repetitive	20	μs
Reverse Gate – Source Voltage	V_{SG}		30	V
Reverse Drain – Source Voltage	V_{SD}		25	V
Power Dissipation	P _{tot}	T _C = 95 °C	91	W
Storage Temperature	T_{stg}		-55 to 175	°C

Electrical Characteristics at T_j = 175 °C, unless otherwise specified

Donomoton	O. mah al	Conditions	Values		1114		
Parameter	Symbol	Conditions -	min.	typ.	max.	Unit	
On Characteristics							
		I _D = 10 A, I _G = 200 mA, T _j = 25 °C		1.4			
Drain – Source On Voltage	$V_{DS(ON)}$	$I_D = 10 \text{ A}, I_G = 400 \text{ mA}, T_j = 125 ^{\circ}\text{C}$		1.6		V	
		$I_D = 10 \text{ A}, I_G = 800 \text{ mA}, T_j = 175 °C$		2.2			
		I _D = 10 A, I _G = 200 mA, T _j = 25 °C		140			
Drain – Source On Resistance	$R_{DS(ON)}$	$I_D = 10 \text{ A}, I_G = 400 \text{ mA}, T_i = 125 ^{\circ}\text{C}$		160		mΩ	
	20(011)	$I_D = 10 \text{ A}, I_G = 800 \text{ mA}, T_i = 175 °C$		220			
0.1.5	$V_{\rm GS(FWD)}$	I _G = 500 mA, T _i = 25 °C		3.3			
Gate Forward Voltage		$I_G = 500 \text{ mA}, T_i = 175 °C$		3.1		V	
DC Command Cain	0	V _{DS} = 5 V, I _D = 10 A, T _i = 25 °C		TBD			
DC Current Gain	β	$V_{DS} = 5 \text{ V}, I_D = 10 \text{ A}, T_j = 175 °C$		TBD			
Off Characteristics							
		V _R = 1200 V, V _{GS} = 0 V, T _i = 25 °C		350			
Drain Leakage Current	I _{DSS}	$V_R = 1200 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 125 \text{ °C}$		530		nA	
-		$V_R = 1200 \text{ V}, V_{GS} = 0 \text{ V}, T_j = 175 ^{\circ}\text{C}$		700			
Gate Leakage Current	lsg	V _{SG} = 20 V, T _i = 25 °C		20		nA	

Electrical Characteristics at T_j = 175 °C, unless otherwise specified

Dovementer	Cross la a l	Symbol Conditions		Values		1114
Parameter	Symbol	Conditions	min.	typ.	max.	Unit
Capacitance Characteristics						
Gate-Source Capacitance	C _{gs}	V _{GS} = 0 V, f = 1 MHz		tbd		pF
Input Capacitance	C _{iss}	$V_{GS} = 0 \text{ V}, V_{D} = 1 \text{ V}, f = 1 \text{ MHz}$		tbd		pF
Reverse Transfer/Output Capacitance	C_{rss}/C_{oss}	$V_D = 1 V, f = 1 MHz$		tbd		pF
Switching Characteristics						
Turn On Delay Time	t _{d(on)}			tbd		ns
Rise Time	t _r	$V_{DD} = 800 \text{ V}, I_D = 10 \text{ A},$		tbd		ns
Turn Off Delay Time	$t_{d(off)}$	$R_{G(on)} = R_{G(off)} = 44 \Omega,$ $V_{GS} = -8/15 V, L = 1.1 mH,$		tbd		ns
Fall Time	t _f	FWD = GB20SLT12,		tbd		ns
Turn-On Energy Per Pulse	E _{on}	T _j = 25 °C		tbd		μJ
Turn-Off Energy Per Pulse	E_{off}	Refer to Figure 15 for gate current waveform		tbd		μJ
Total Switching Energy	E_{ts}			tbd		μJ
Turn On Delay Time	$t_{d(on)}$			tbd		
Rise Time	t _r	$V_{DD} = 800 \text{ V}, I_D = 10 \text{ A},$		tbd		ns
Turn Off Delay Time	$t_{d(off)}$	$R_{G(on)} = R_{G(off)} = 44 \Omega,$ $V_{GS} = -8/15 V, L = 1.1 mH,$		tbd		ns
Fall Time	t _f	FWD = GB20SLT12, T _j = 175 °C Refer to Figure 15 for gate current		tbd		ns
Turn-On Energy Per Pulse	Eon			tbd		μJ
Turn-Off Energy Per Pulse	E _{off}			tbd		μJ
Total Switching Energy	E _{ts}	waveform		tbd		μJ
Thermal Characteristics						
Thermal resistance, junction - case	R _{thJC}			0.88		°C/W

	re	

TBD

TBD

Figure 1: Typical Output Characteristics at 25 °C

Figure 2: Typical Output Characteristics at 125 °C

TBD

TBD

Figure 3: Typical Output Characteristics at 175 °C

Figure 4: Typical Gate Source I-V Characteristics vs. Temperature

TBD

TBD

Figure 5: Normalized On-Resistance and Current Gain vs. Temperature

Figure 6: Typical Blocking Characteristics

TBD

TBD

Figure 7: Capacitance Characteristics

Figure 8: Capacitance Characteristics

TBD

TBD

Figure 9: Typical Hard-switched Turn On Waveforms

Figure 10: Typical Hard-switched Turn Off Waveforms

TBD

TBD

Figure 11: Typical Turn On Energy Losses and Switching Times vs. Temperature

Figure 12: Typical Turn Off Energy Losses and Switching Times vs. Temperature

TBD

TBD

Figure 13: Typical Turn On Energy Losses vs. Drain Current

Figure 14: Typical Turn Off Energy Losses vs. Drain Current

TBD

TBD

Figure 15: Typical Gate Current Waveform

Figure 16: Typical Hard Switched Device Power Loss vs. Switching Frequency ¹

TBD

TBD

Figure 17: Power Derating Curve

Figure 18: Forward Bias Safe Operating Area

TBD

TBD

Figure 19: Turn-Off Safe Operating Area

Figure 20: Transient Thermal Impedance

^{1 –} Representative values based on device switching energy loss. Actual losses will depend on gate drive conditions, device load, and circuit topology.

Gate Drive Technique (Option #1)

To drive the GA10JT12-247 with the lowest gate drive losses, please refer to the dual voltage source gate drive configuration described in Application Note AN-10B (http://www.genesicsemi.com/index.php/references/notes).

Gate Drive Technique (Option #2)

The GA10JT12-247 can be effectively driven using the IXYS IXDN614 / IXDD614 non-inverting gate driver IC or a comparable product. A typical gate driver configuration along with component values using this driver is offered below. Additional information is available in GeneSiC Application Note AN-10A and from the manufacturer at www.ixys.com.

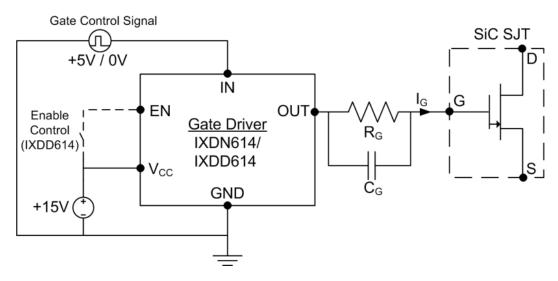
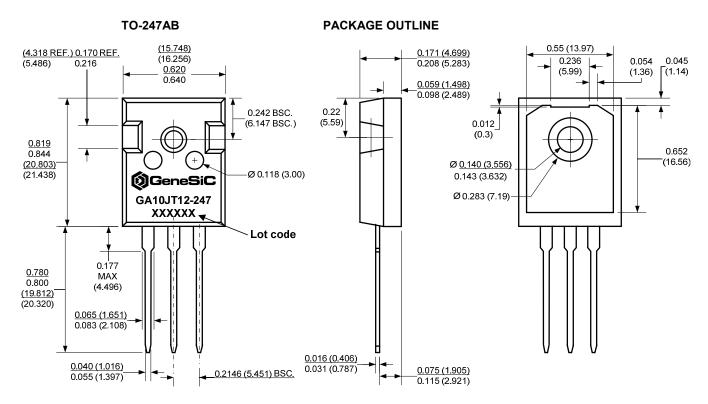



Figure 21: Recommended Gate Diver Configuration (Option #2)

Parameter	Cumahal	Conditions	Values			I I m i 4
	Symbol		min.	typ.	max.	Unit
Option #2 Gate Drive Conditions (I)	XDD614/IXDN614)					
Supply Voltage	V _{cc}		-0.3	15	40	V
Gate Control Input Signal, Low	IN		-5.0	0	0.8	V
Gate Control Input Signal, High	IN		3.0	5.0	V _{CC} +0.3	V
Enable, Low	EN	IXDD614 Only			1/3*V _{CC}	V
Enable, High	EN	IXDD614 Only	2/3*V _{CC}			V
Output Voltage, Low	V_{OUT}				0.025	V
Output Voltage, High	V_{OUT}		V _{CC} -0.025			V
Output Current, Peak	I _{OUT}	Package Limited		tbd	14	Α
Output Current, Continuous	I _{OUT}			tbd	4.0	Α
Passive Gate Components						
Gate Resistance	R_G	I _G ≈ 0.5 A	5	tbd		Ω
Gate Capacitance	C_{G}	I _G ≈ 0.5 A		tbd		nF

Package Dimensions:

NOTE

- 1. CONTROLLED DIMENSION IS INCH. DIMENSION IN BRACKET IS MILLIMETER.
- 2. DIMENSIONS DO NOT INCLUDE END FLASH, MOLD FLASH, MATERIAL PROTRUSIONS

Revision History					
Date Revision Comments Supersedes					
2013/09/12	0	Initial release			

Published by GeneSiC Semiconductor, Inc. 43670 Trade Center Place Suite 155 Dulles, VA 20166

GeneSiC Semiconductor, Inc. reserves right to make changes to the product specifications and data in this document without notice.

GeneSiC disclaims all and any warranty and liability arising out of use or application of any product. No license, express or implied to any intellectual property rights is granted by this document.

Unless otherwise expressly indicated, GeneSiC products are not designed, tested or authorized for use in life-saving, medical, aircraft navigation, communication, air traffic control and weapons systems, nor in applications where their failure may result in death, personal injury and/or property damage.

SPICE Model Parameters

Copy the following code into a SPICE software program for simulation of the GA10JT12 SJT device.

```
MODEL OF GeneSiC Semiconductor Inc.
     $Revision: 1.0
     $Date: 26-AUG-2013
                                $
    GeneSiC Semiconductor Inc.
     43670 Trade Center Place Ste. 155
    Dulles, VA 20166
    http://www.genesicsemi.com/index.php/sic-products/sjt
    COPYRIGHT (C) 2013 GeneSiC Semiconductor Inc.
     ALL RIGHTS RESERVED
* These models are provided "AS IS, WHERE IS, AND WITH NO WARRANTY
* OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED
* TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
* PARTICULAR PURPOSE."
* Models accurate up to 2 times rated drain current.
.model GA10JT12 NPN
+ IS
          5.00E-47
+ ISE
         1.26E-28
+ EG
         3.2
          100
+ BF
+ BR
         0.55
+ IKF
         350
+ NF
         1
+ NE
         2
         0.26
+ RB
+ RE
         0.01
+ RC
         0.1
+ CJC
        3.50E-10
+ VJC
         3
+ MJC
         0.5
+ CJE
         1.11E-9
+ VJE
          3
         0.5
+ MJE
         3
+ XTI
+ XTB
          -1.2
+ TRC1
         7.00E-3
+ VCEO
         1200
+ ICRATING 10
+ MFG
      GeneSiC_Semiconductor
```

* End of GA10JT12 SPICE Model