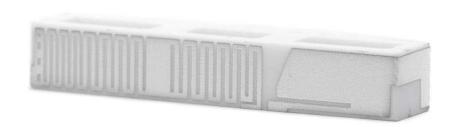


SPECIFICATION


Part No. : PA.22A

Product Name : **GSM Dielectric PIFA Antenna**

Description : Tri-band - 880~960 MHz, 1710~1990 MHz, 0dB Gain

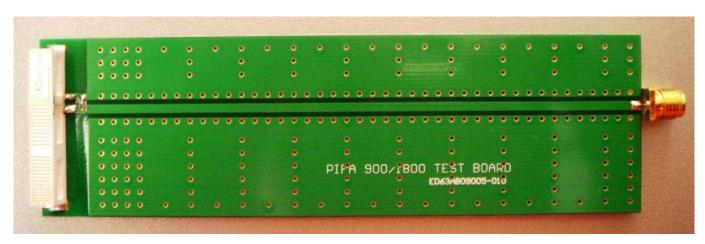
Size: 29.8mm*6mm*5mm

RoHS

SPE-11-8-060/F Page 1 of 21

1.0 Scope

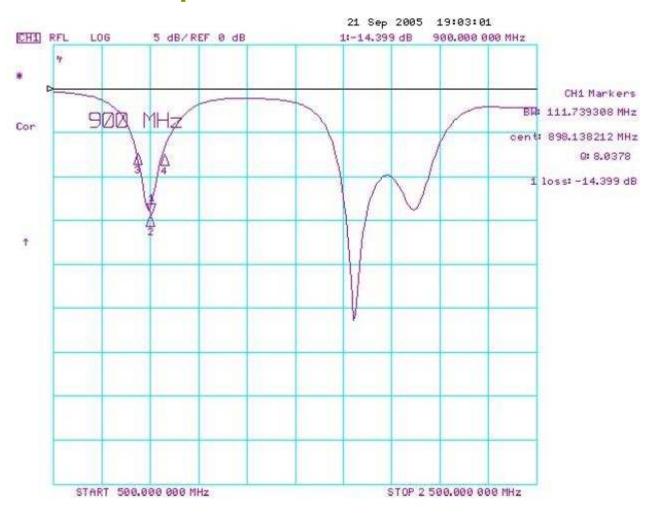
This specification is for a Tri-band GSM miniature PIFA (Dielectric Planar inverted-F Type Antenna) (DPA™) Antenna for internal SMT mounting.


Note: The antenna also shows a response at 850MHz which means the antenna can also be defined on quad-band, depending on the target specification for the device itself.

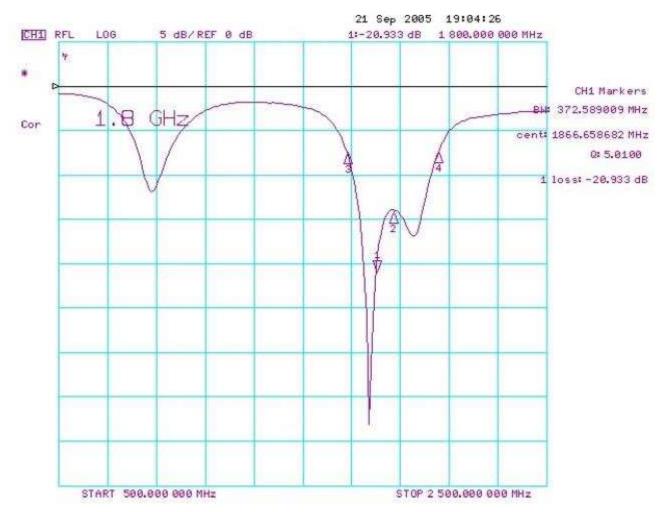
2.0 Electrical Specifications

The antenna has the electrical characteristics given in Table 1 under the Taoglas standard installation conditions as shown in the Evaluation Board (Figure

No.	Parameter	Specification
1	Frequency	880~960 MHz , 1710~1990 MHz
2	Dimensions	29.8*6.0*5.0 mm
3	Impedance	50 Ω
4	VSWR	2.5 max (depends on environment)
5	Polarization	Linear
6	Operating Temperature	-40~105°C
		Ag (Environmentally Friendly Lead-
7	Termination	Free)


*Data is measured on Taoglas Evaluation Board (reference ground plane) pictured below

SPE-11-8-060/F Page 2 of 21



2.1 S11 Response Curve

SPE-11-8-060/F Page 3 of 21

Radiation patterns also available (measured in free space and on evaluation board)

SPE-11-8-060/F Page 4 of 21

2.2 Gain and Efficiency

GSM900

Frequency		Peak Gain	Efficiency
	(MHz)	(dBi)	(%)
тх	880.2	-3.65	21.09
	890.2	-2.73	26.25
	902.4	-2.28	31.23
	914.8	-2.04	35.24
RX	925.2	-1.96	37.02
	935.2	-2.54	33.33
	947.4	-2.96	31.17
	959.8	-3.16	29.47

SPE-11-8-060/F Page 5 of 21

GSM1800

Frequency		Peak Gain	Efficiency
	(MHz)	(dBi)	(%)
тх	1710.2	2.28	60.63
	1747.6	2.35	61.53
	1784.8	2.58	60.77
RX	1805.2	2.32	56.67
	1842.6	2.43	56.31
	1879.8	2.59	58.69

GSM1900

Frequency		Peak Gain	Efficiency
	(MHz)	(dBi)	(%)
тх	1850.2	2.48	56.95
	1880.0	2.60	58.75
	1909.8	2.12	52.79
RX	1930.2	2.01	52.02
	1960.0	1.31	47.26
	1989.8	0.30	38.62

SPE-11-8-060/F Page 6 of 21

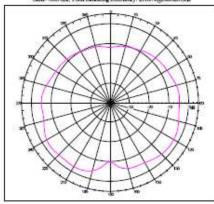
GSM900 GSM1800

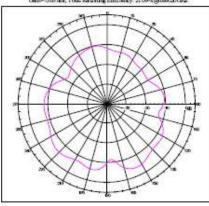
F	requency (GHz)	Plane	Average Gain (dBi)
	880.2	XY plane	-7.133
		YZ plane	-9.766
		XZ plane	-6.101
		XY plane	-5.968
	890.2	YZ plane	-8.845
TX		XZ plane	-5.126
1.		XY plane	-4.898
	902.4	YZ plane	-8.892
		XZ plane	-4.350
	914.8	XY plane	-4.077
		YZ plane	-7.477
		XZ plane	-3.865
	925.2	XY plane	-3.599
		YZ plane	-7.202
		XZ plane	-3.732
	935.2	XY plane	-3.802
		YZ plane	-7.648
RX		XZ plane	-4.290
	947.4	XY plane	-3.788
		YZ plane	-7.843
		XZ plane	-4.579
	959.8	XY plane	-3.801
		YZ plane	-7.913
		XZ plane	-5.187

F	requency (GHz)	Plane	Average Gain (dBi)
	1710.2	XY plane	-2.648
		YZ plane	-4.661
		XZ plane	-1.687
	1747.6	XY plane	-2.529
TX		YZ plane	-4.696
		XZ plane	-1.207
	1784.8	XY plane	-2.685
		YZ plane	-4.687
		XZ plane	-0.888
	1805.2	XY plane	-3.193
		YZ plane	-4.911
		XZ plane	-1.105
RX	1842.6	XY plane	-3.468
		YZ plane	-4.753
		XZ plane	-1.145
		XY plane	-3.745
	1879.8	YZ plane	-4.131
		XZ plane	-1.430

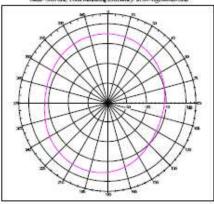
GSM1900

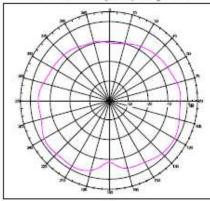
F	requency (GHz)	Plane	Average Gain (dBi)
TX		XY plane	-3.511
	1850.2	YZ plane	-4.649
		XZ plane	-1.147
		XY plane	-3.746
	1880.0	YZ plane	-4.124
		XZ plane	-1.435
		XY plane	-4.683
	1909.8	YZ plane	-4.228
		XZ plane	-2.525
	1930.2	XY plane	-5.539
		YZ plane	-4.270
		XZ plane	-3.257
		XY plane	-6.444
RX	1960.0	YZ plane	-4.441
		XZ plane	-4.126
		XY plane	-8.068
	1989.8	YZ plane	-5.359
		XZ plane	-5.477

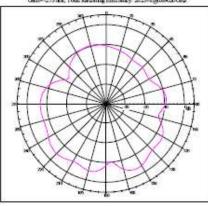

SPE-11-8-060/F Page 7 of 21


GSM900

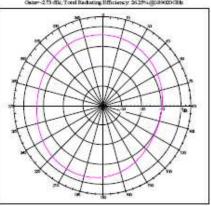
Frequency:880.2 MHz


Far-field Rose Distribution on No.2 Rana(E-Flane of L.1 Pol Sonse) Georg-3-65 GR; Total Racketing Difficiency: 21.05% (\$000)0000000000

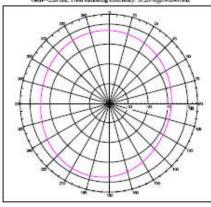

Far-field Power Distribution on Y-Z Plano (H-Plane of L3 Pol Serve)
Onto---368 dB; Total Radiating Efficiency: 21 09% §0089020002.



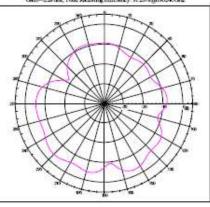
Far-field Power Distribution on X-Y Plane to-345 dtt; Total Radiating Efficiency: 21.09%(gpmin2000th)



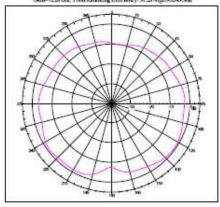
Frequency:890.2 MHz
Freded Powr Excitation on No. Decord-Blace of 1.3 Pol. Strand
Outer-273 dNi, Total Radiating Efficiency: 2629% (2019)20000001



Far-field Power Distribution on X-Y Plane nr-273 dti; Total Backsting Efficiency 26.25% (2018) 0000000000

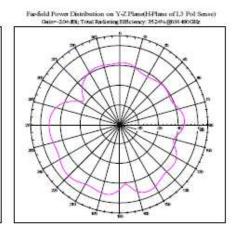


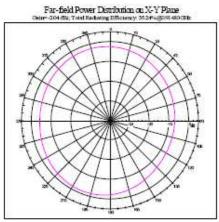
Frequency:902.4MHz

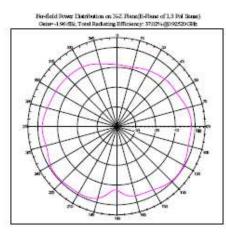

Far-field Power Distribution on X-Y Plane n=-220 dis, Total Radiating Efficiency: N 2014 (80) 900 90 00 in

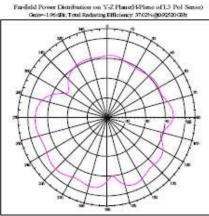
Fas-field Fower Distribution on Y-Z Plane(H-Plane of L3 Pol Sense) Cairs-228 dB; Total Radining Efficiency: 31 23%(80024) GRs.

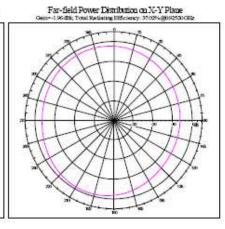
Far-field Fower Distribution on N.Z. Bene(B-Plane of L3 Pol Strue) Ontre-228 GB; Total Backsting Efficiency 31 274 (\$390000 GB)

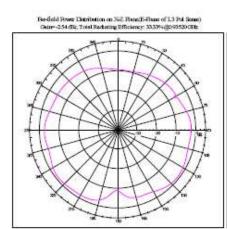


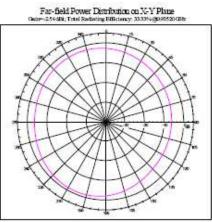

SPE-11-8-060/F Page 8 of 21

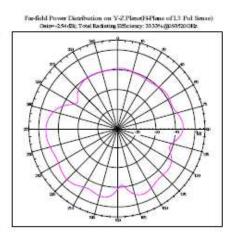

Frequency:914.8MHz


Per-field flowr Distribution on No.7. Reneill-flowe of 1.3 Pol Sense)
Getter-2.04-5ks, Total Radiating Efficiency, 76.24% (Sport 400-GHz)




Frequency:925.2MHz





Frequency:935.2MHz

SPE-11-8-060/F Page 9 of 21

Frequency:947.4MHz

Fer-field liver Distribution on No.7 Henrik-Henri of L3 Pol Same)

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

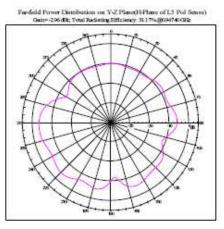
Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

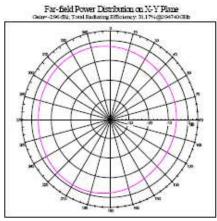
Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

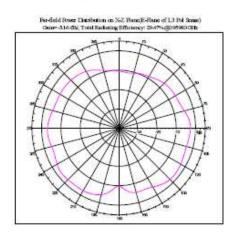
Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

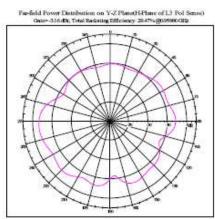
Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

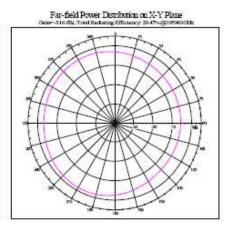

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

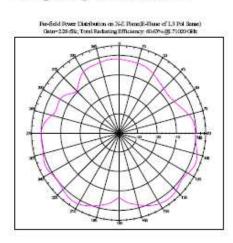

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

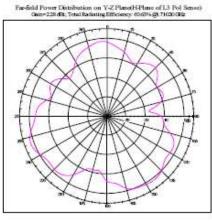
Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk

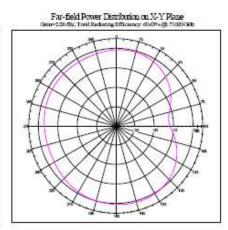

Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61%) Cilk


Oster - 296-fills, Total Rachating Rifleriency, 31.17% (200-61

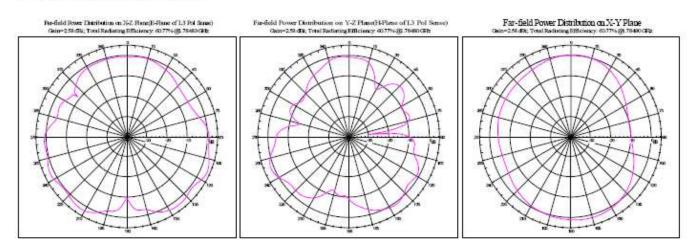


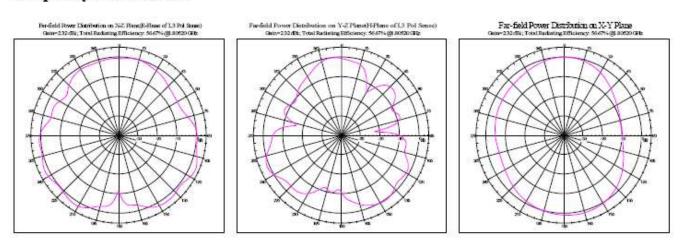

Frequency:959.8MHz





GSM1800 Frequency :1710.2 MHz

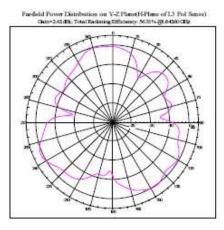

SPE-11-8-060/F Page 10 of 21

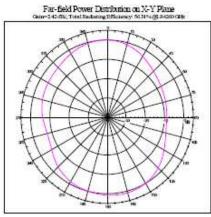

Frequency:1747.6 MHz

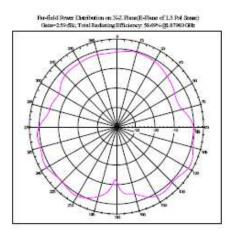
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Sense)
Gain-235-GB; Total Padoting Efficiency GLSFs(g) 3-66-GB;
Far-field Power Distribution on X-2 Plane(H-Plane of L3 Pol Se

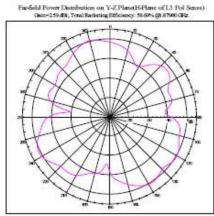
Frequency:1784.8 MHz

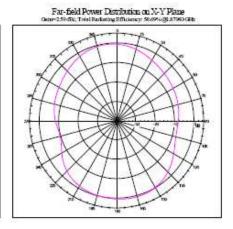
Frequency:1805.2 MHz



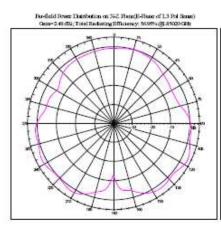

SPE-11-8-060/F Page 11 of 21

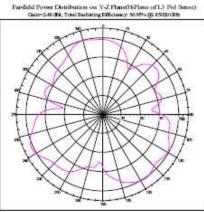

Frequency:1842.6 MHz

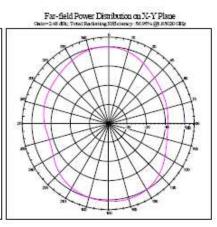

Far-field Roser Databasing Billistercy 56316-40 a George 242-00; Total Backering Billistercy 56316-40



Frequency:1879.8 MHz

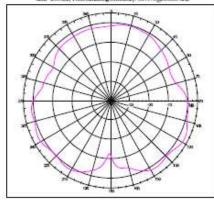


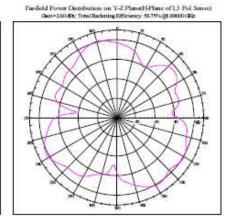


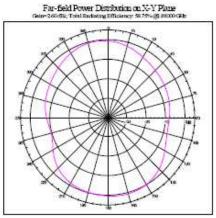


GSM1900

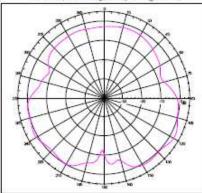
Frequency:1850.2 MHz

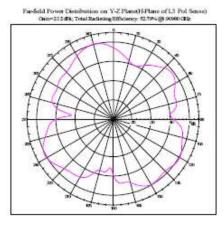


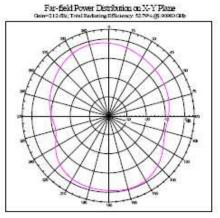



SPE-11-8-060/F Page 12 of 21

Frequency:1880.0 MHz Partial Rower Destruction on No.2 Managin-Plans of 1.3 Pet Street Gain-200-201; Total Racketing Efficiency: 58.75%-98.88000 GR

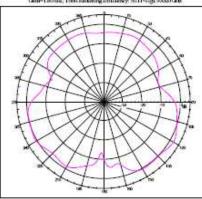


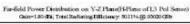


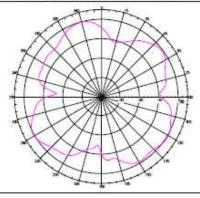


Frequency:1909.8 MHz

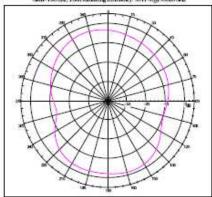
Par-Solid Power Extension on N.Z. Phate (F-Plane of L.) Fol Sonat) Gain=212-ffk; Total Radiating Officiency, 52 79% (B. 9091) Gib



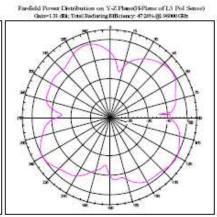


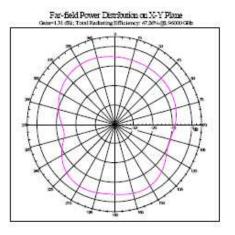


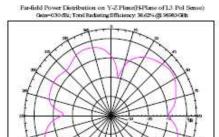
Frequency: 1930.2 MHz

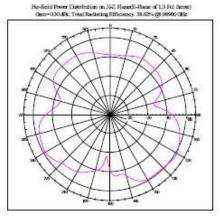

Per-Gold Power (Metribution on N-2 Plane (H-Plane of 1.3 Pol Serse) Genral 200 ffix; Total Radiating Efficiency, 501154 (B. 9002) Geb.

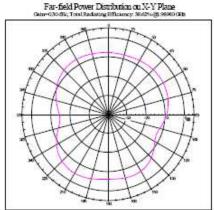
Far-field Power Distribution on X-Y Plane



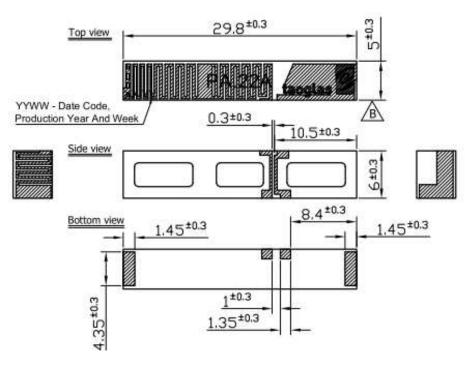

SPE-11-8-060/F Page 13 of 21

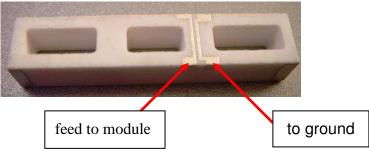

Frequency: 1960.0 MHz

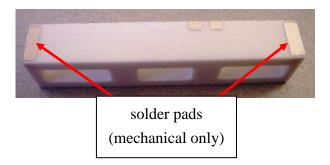

Fur-field Fewer Datritation on No. Hencell-Hanc of L3 Pet Sense)
Genr-1.31 dis; Total Radating Efficiency of 20% (8) 56000 GHz



Frequency: 1989.8 MHz

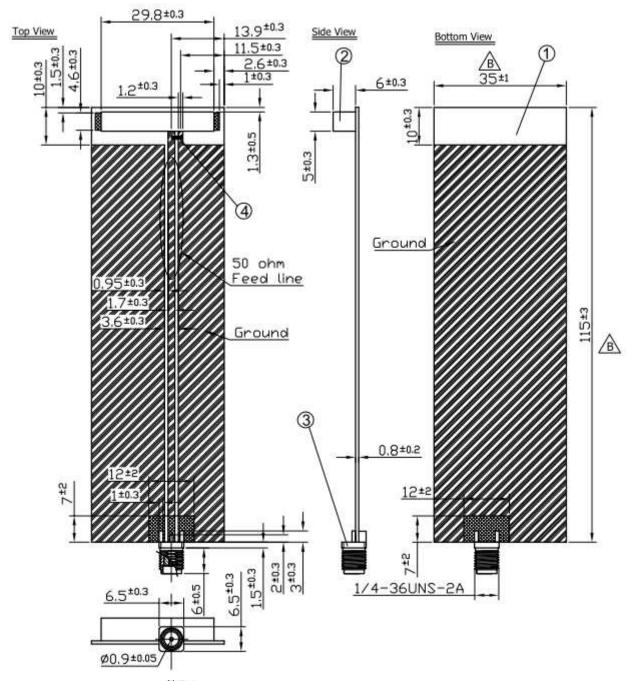



SPE-11-8-060/F Page 14 of 21



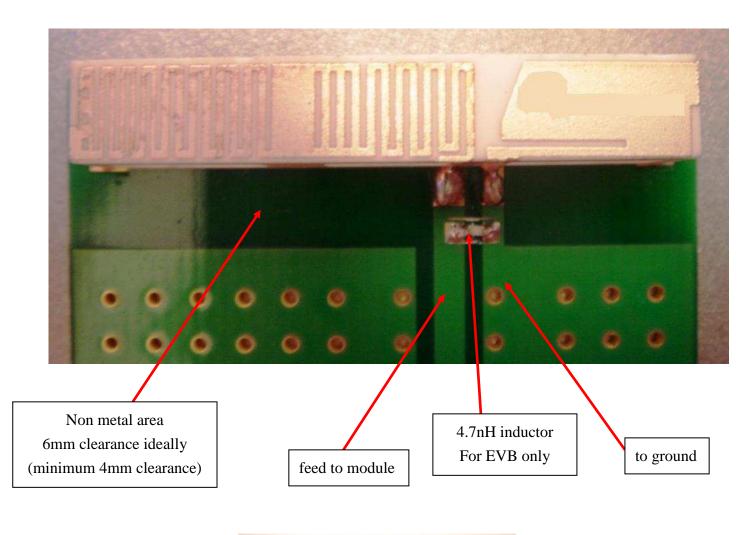
3.0 Mechanical Dimensions

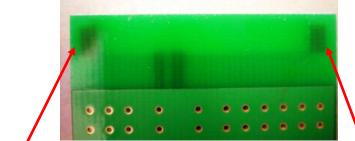
3.1 PA.22 Antenna



SPE-11-8-060/F Page 15 of 21

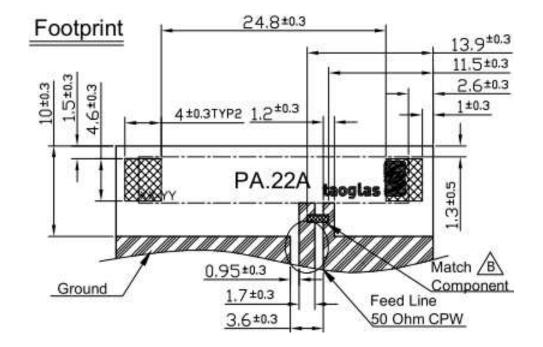
3.2Evaluation board dimensions




- 1. Unique dimensioning according to your PCB inductor and capacitor values according to you specific device
- Copper area
 Soldered area
- 4.Clearance area

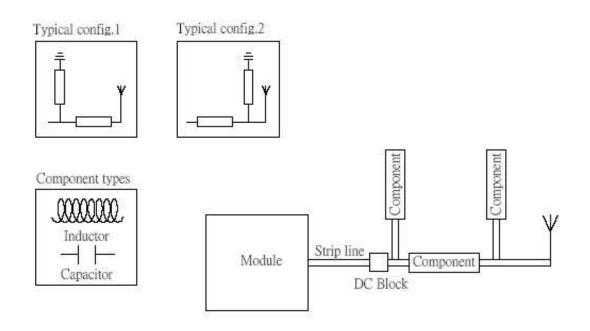
SPE-11-8-060/F Page 16 of 21

3.3 Recommended layout (as per Taoglas evalution board)

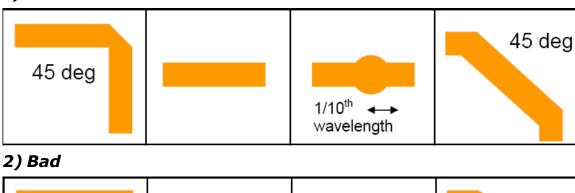


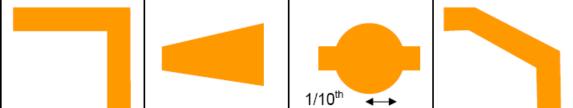
View from underneath board – note solder pads either side – laid out on non metal area Layout dimensions - Allow 6mm clearance all around if possible (minimum 4mm)

SPE-11-8-060/F Page 17 of 21



SPE-11-8-060/F Page 18 of 21


3.4 Recommended Transmission Line and Matching Network



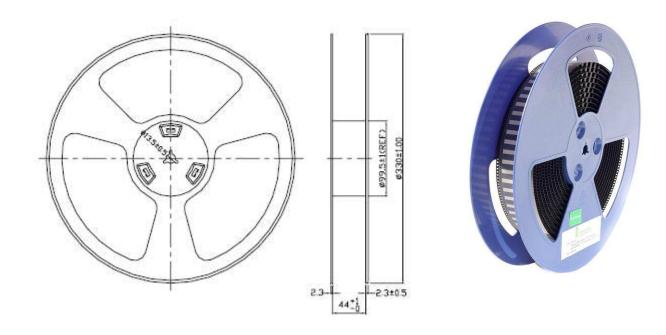
The matching network has to be individually designed using one, two or three components.

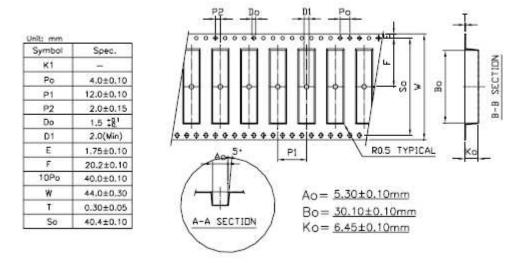
Note: The PA.22 can be made "quad band" with appropriate matching circuit Guidelines for routing RF when designing a PCB;

1) Good

SPE-11-8-060/F Page 19 of 21

wavelength

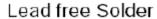


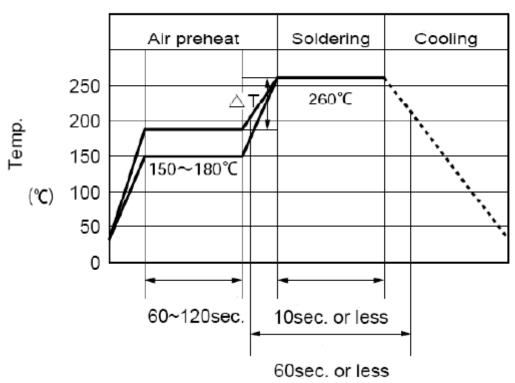

4.0 Delivery Mode

Blister tape to IEC 286-3, polyester

Pieces per tape: 450

4 Reels (1800) in each Carton – Carton size 37cm*36cm*27.5cm Carton Weight – Net Weight 5.9kg – Gross Weight 7.5kg (approx)


Note: Design application note also available


Note: Environmental test report also available

SPE-11-8-060/F Page 20 of 21

5.0 Recommended Reflow Temperature Profile

- (1) Time shown in the above figures is measured from the point when chip surface reaches temperature.
- (2) Temperature difference in high temperature part should be within 110°C.
- (3) After soldering, do not force cool, allow the parts to cool gradually.
- *General attention to soldering:
- High soldering temperatures and long soldering times can cause leaching of the termination, decrease in adherence strength, and the change of characteristic may occur.
- for soldering, please refer to the soldering curves above. However, please keep exposure to temperatures exceeding 200°C to under 50 seconds.
- please use a mild flux (containing less than 0.2wt% Cl). Also, if the flux is water soluble, be sure to wash thoroughly to remove any residue from the underside of components that could affect resistance.

Cleaning:

When using ultrasonic cleaning, the board may resonate if the output power is too high. Since this vibration can cause cracking or a decrease in the adherence of the termination, we recommend that you use the conditions below.

Frequency: 40 kHz max. - Output power: 20W/Iiter -Cleaning time: 5minutes max.

SPE-11-8-060/F Page 21 of 21