

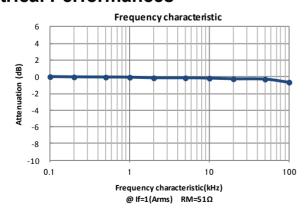
Hall Effect Current Sensors S23P***D15M1 Series

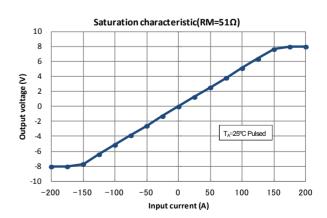
Features:

- · Closed Loop type
- Current or voltage output
- Conversion ratio K_N = 1:1000
- · Printed circuit board mounting
- Integrated primary
- Insulated plastic case according to UL94V0
- UL Recognition

Advantages:

- Excellent accuracy and linearity
- Low temperature drift
- Wide frequency bandwidth
- No insertion loss
- High Immunity to external interferences
- Optimised response time
- Current overload capability

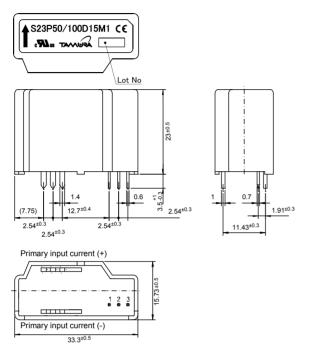

Specifications


T_A=25°C, V_{CC}=±15V

Parameters	Symbol	S23P50/100D15M1		
Primary nominal current	I _f	50A	100A	
Maximum current ¹ (at 85°C)	I _{fmax}	± 226A (at R _M ≤7.5Ω)		
Measuring resistance (If = $\pm A_{DC}$ at 85°C)	R _M	20Ω~145Ω (at $V_{CC} = \pm 12V$) 48Ω~205Ω (at $V_{CC} = \pm 15V$)	20Ω~57Ω (at V_{CC} = ±12V) 48Ω~85Ω (at V_{CC} = ±15V)	
Conversion Ratio	K _N	1 : 1000	1 : 1000	
Rated output current	I _O	50mA	100mA	
Output current accuracy ² (at I _f)	Х	I ₀ ±0.25%		
Offset current ³ (at If=0A)	l _{Of}	≤ ±0.30mA		
Output linearity ² (0A~If)	ε ∟	≤ ±0.15% (at I _f)		
Power supply voltage ¹	V _{cc}	± 12V ± 15V ± 5%		
Consumption current	Icc	≤ ±16mA (Output current is not included)		
Response rime ⁴	t _r	≤ 0.5µs (at di/dt = 100A / µs)		
Thermal drift of gain ⁵	Tclo	≤ ±0.01%/°C		
Thermal drift of offset current	Tclof	\leq ±0.5mA typ \leq ±0.8mA max (at T _A = -25°C \Leftrightarrow +85°C)		
Hysteresis error	I _{OH}	\leq 0.3mA (at I _f =0A \rightarrow I _f \rightarrow 0A)		
Insulation voltage	V_d	AC5000V, for 1minute (sensing current 0.5mA), Primary ⇔ Secondary		
Insulation resistance	R _{IS}	≥ 500MΩ (at DC500V) Primary ⇔ Secondary		
Secondary coil resistance	Rs	33Ω (at $T_A = 70$ °C) 35Ω (at $T_A = 85$ °C)		
Ambient operation temperature	T _A	–40°C ~ +85°C		
Ambient storage temperature	Ts	–40°C ~ +90°C		

¹ At V_{CC} =±12V ,Ifmax Operating Time: ≤ 3 Seconds. Maximum current is restricted by V_{CC} — ² Without offset current— ³ After removal of core hysteresis— ⁴ Time between 90% input current full scale and 90% of sensor output full scale — ⁵ Without Thermal drift of offset current

Electrical Performances



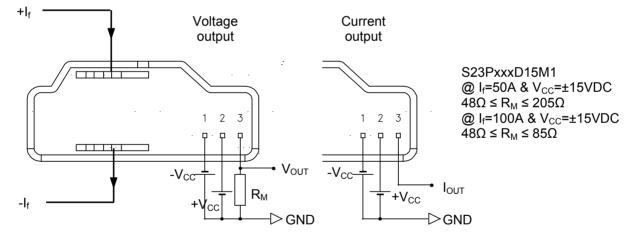
Hall Effect Current Sensors S23P***D15M1 Series

Mechanical dimensions

NOTES

- 1. Unit is mm
- 2. Tolerance is 0.5mm

Terminal number:


- 1. -Vcc(-15V)
- 2. +Vcc(+15V)
- 3. I_{OUT}

Connection specific

1.The primary connection 6Pins 1.4×1mm Recommended PCB hole diameter:Φ2mm

2.The secondary connection 3Pins 0.7×0.6mm Recommended PCB hole diameter:Φ1.2mm

Electrical connection diagram

UL Standard

UL 508, CSA C22.2 No.14 (UL FILE No.E243511)

- For use in Pollution Degree 2 Environment.
- Maximum Surrounding air temperature rating, 85°C.

CAUTION

Provide two min. 100 by 85 mm, 0.5 mm thick cupper conductor-cum-heat sink as primary conductor of each side for safe usage. The primary conductor temperature and PCB should not exceed 100°C.

Package & Weight Information

Weight	Pcs/box	Pcs/carton	Pcs/pallet
26g	100	400	9600

