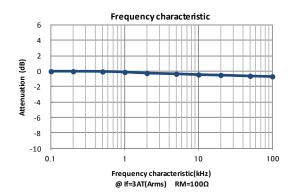


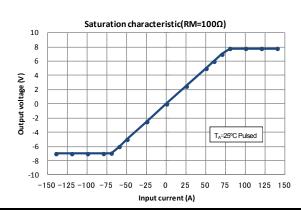
The second secon

Hall Effect Current Sensor S25P050D15X

Features:

- · Closed Loop type
- Current or voltage output
- Conversion ratio K_N = 1:1000
- · Printed circuit board mounting
- Aperture
- Insulated plastic case according to UL94V0
- UL Recognition

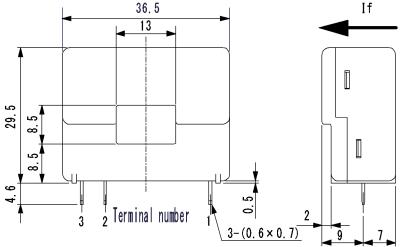

Advantages:


- Excellent accuracy and linearity
- Low temperature drift
- Wide frequency bandwidth
- No insertion loss
- High Immunity to external interferences
- Optimised response time
- Current overload capability

<u>Specifications</u>		$T_A=25^{\circ}C$, $V_{CC}=\pm15V$	
Parameters	Symbol	S25P050D15X	
Primary nominal current	I _f	50A	
Maximum current ¹ (at 85°C)	I _{fmax}	\pm 55A (at R _M = 135 Ω)	
Measuring resistance (If = ±A _{DC} at 85°C)	R _M	$60\Omega \sim 95\Omega$ (at $V_{CC} = \pm 12V$) $135\Omega \sim 155\Omega$ (at $V_{CC} = \pm 15V$)	
Conversion Ratio	K _N	1 : 1000	
Rated output current	Io	50mA	
Output current accuracy ² (at I _f)	х	I _O ± 0.5%	
Offset current ³ (at If=0A)	l _{Of}	≤ ± 0.2mA	
Output linearity ² (0A~If)	ε.	≤ ± 0.15% (at I _f)	
Power supply voltage ¹	V _{cc}	± 12V± 15V ± 5%	
Consumption current	Icc	≤ ± 16mA (Output current is not included)	
Response rime ⁴	t _r	≤ 1. 0µs (at di/dt = 100A / µs)	
Thermal drift of gain ⁵	Tclo	≤ ± 0.01% / °C	
Thermal drift of offset current	Tclof	\leq ± 0.5mA (at T _A = -40° C \Leftrightarrow +85°C)	
Hysteresis error	I _{он}	\leq 0.3mA (at I _f =0A \rightarrow I _f \rightarrow 0A)	
Insulation voltage	V _d	AC 3000V, for 1minute (sensing current 0.5mA), inside of through hole ⇔ terminal	
Insulation resistance	R _{IS}	$\geq 500 M\Omega$ (at DC 500V) , inside of through hole \Leftrightarrow terminal	
Secondary coil resistance	Rs	80Ω (at $T_A = 70$ °C) 85Ω (at $T_A = 85$ °C)	
Ambient operation temperature	T _A	– 40°C ∼ +85°C	
Ambient storage temperature	Ts	–40°C ∼ +90°C	

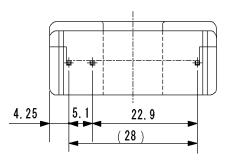
 $^{^1}$ At T_A = 70°C , I_{fmax}= 70A(at 50 $\Omega \le R_L \le 90\Omega$). Maximum current is restricted by V_{CC} — 2 Without offset current— 3 After removal of core hysteresis— 4 Time between 90% input current full scale and 90% of sensor output full scale — 5 Without Thermal drift of offset current

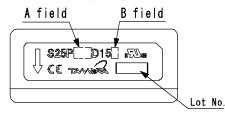
Electrical Performances



Hall Effect Current Sensor S25P050D15X

Mechanical dimensions

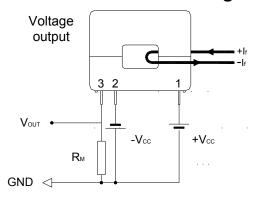


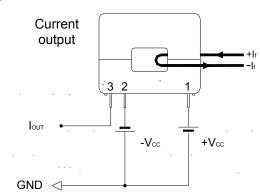

NOTES

- 1. Unit is mm
- 2. Tolerance is 0.5mm

Terminal number:

- 1. +Vcc(+15V)
- 2. -Vcc(-15V)
- 3. I_{OUT}




A field display				
Current	A field			
50A	050			
100A	100			
150A	150			

	B field display			
	Coil turn	B field		
	1000T	Х		
	2000T	Υ		
i				

50A is 1000T only 150A is 2000T only

Electrical connection diagram

S25P050D15X

At $I_f = 50A \& V_{CC} = \pm 15V_{DC}$ $135\Omega \le R_M \le 155\Omega$

UL Standard

UL 508, CSA C22.2 No.14 (UL FILE No.E243511)

- For use in Pollution Degree 2 Environment.
- Maximum Surrounding air temperature rating, 85°C.

CAUTION

Do not wrap the primary conductor around the core part of the product to increase measured current.

Package & Weight Information

Weight	Pcs/box	Pcs/carton	Pcs/pallet
20g	100	300	7200

