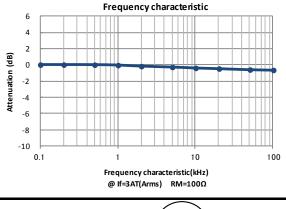


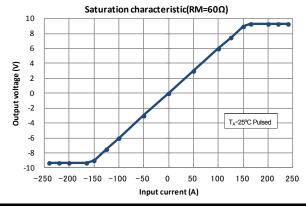
- -

Hall Effect Current Sensor S25P100D15X

Features:

- Closed Loop type •
- Current or voltage output •
- Conversion ratio $K_N = 1:1000$ •
- Printed circuit board mounting
- Aperture
- Insulated plastic case according to . • UL94V0
- **UL** Recognition

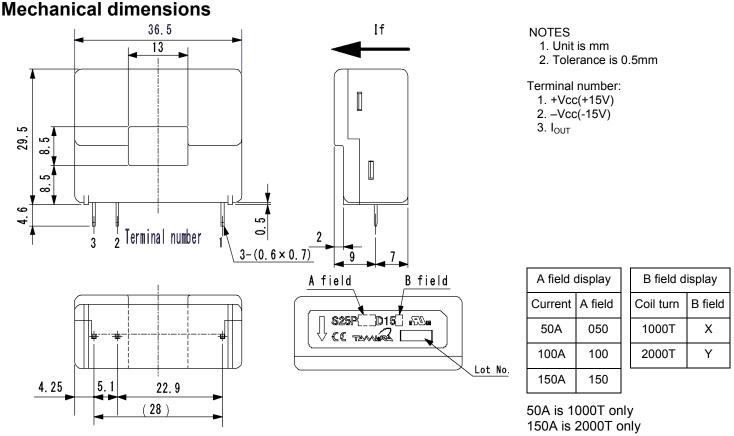

Advantages:

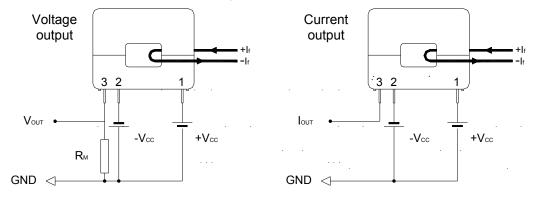

- Excellent accuracy and linearity
- Low temperature drift
- Wide frequency bandwidth •
- No insertion loss •
- High Immunity to external interferences
- Optimised response time
- Current overload capability •

Parameters	Symbol	S25P100D15X	
Primary nominal current	l _f	100A	
Maximum current ¹ (at 85°C)	I _{fmax}	\pm 160A (at 40 $\Omega \le R_M \le 50\Omega$)	
Measuring resistance (If = $\pm A_{DC}$ at 85°C)	R _M	$10\Omega \sim 65\Omega$ (at V_{CC} = ±12V) / $40\Omega \sim 95\Omega$ (at V_{CC} = ±15V)	
Conversion Ratio	K _N	1 : 1000	
Rated output current	lo	100mA	
Output current accuracy ² (at I _f)	X	I _O ± 0.5%	
Offset current ³ (at If=0A)	l _{Of}	≤ ± 0.2mA	
Output linearity ² (0A~If)	ε ∟	≤ ± 0.15% (at I _f)	
Power supply voltage ¹	Vcc	± 12V± 15V ± 5%	
Consumption current	Icc	\leq ± 16mA (Output current is not included)	
Response rime ⁴	tr	≤ 1.0µs (at di/dt = 100A / µs)	
Thermal drift of gain ⁵	Tclo	≤ ± 0.01% / °C	
Thermal drift of offset current	Tclof	$\leq \pm 0.5$ mA (at T _A = -40° C $\Leftrightarrow +85^{\circ}$ C)	
Hysteresis error	I _{он}	$\leq 0.3 m A ~(at~I_f{=}0A \rightarrow I_f \rightarrow ~0A)$	
Insulation voltage	V _d	AC 3000V, for 1minute (sensing current 0.5mA), inside of through hole ⇔ terminal	
Insulation resistance	R _{IS}	\ge 500M Ω (at $$ DC 500V) , inside of through hole \Leftrightarrow terminal	
Secondary coil resistance	Rs	25Ω (at $T_A = 70^{\circ}$ C) / 28Ω (at $T_A = 85^{\circ}$ C)	
Ambient operation temperature	T _A	– 40°C ~ +85°C	
Ambient storage temperature	Ts	-40°C ∼ +90°C	

¹ Maximum current is restricted by $V_{CC} - ^2$ Without offset current—³ After removal of core hysteresis—⁴ Time between 90% input current full scale and 90% of sensor output full scale — ⁵ Without Thermal drift of offset current

Electrical Performances




Tamura reserve the right to modify its products in order to improve them without prior notice

Hall Effect Current Sensor S25P100D15X

Electrical connection diagram

 $\begin{array}{l} \text{S25P100D15X} \\ \text{At I}_{\text{f}} = 100\text{A \& V_{\text{CC}} = \pm 15V_{\text{DC}} \\ \text{40}\Omega \leq R_{\text{M}} \leq 95\Omega \end{array}$

UL Standard

- UL 508 , CSA C22.2 No.14 (UL FILE No.E243511)
- For use in Pollution Degree 2 Environment.
- Maximum Surrounding air temperature rating, 85°C.

CAUTION

Do not wrap the primary conductor around the core part of the product to increase measured current.

Package & Weight Information

W	/eight	Pcs/box	Pcs/carton	Pcs/pallet
	20g	100	300	7200

Tamura reserve the right to modify its products in order to improve them without prior notice