## MOS FET Relays

## G3VM-41AY/DY

## Compact, General-purpose, Analog-switching <br> MOS FET Relay, with Dielectric Strength of 5 kVAC between I/O Using Optical Isolation

- Trigger LED forward current of 2 mA (max.)
- Switches minute analog signals
- Continuous load current of 2A
- RoHS Compliant.


## Application Examples

- Measurement devices
- Security systems and Power meters
- Industrial equipment and Medical equipment



## NEW

Note: The actual product is marked differently from the image shown here.

List of Models

| Package Type | Contact form | Terminals | Load voltage (peak value) | Model | Number per stick | Number per tape |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| DIP4 | SPST-NO | PCB terminals | 40 V | G3VM-41AY | 100 | --- |
|  |  | Surface-mounting terminals |  | G3VM-41DY |  |  |
|  |  |  |  | G3VM-41DY(TR) | --- | 1,500 |

Note: The AC peak and DC value are given for the load voltage.

## ■ Dimensions

Note: All units are in millimeters unless otherwise indicated.

G3VM-41AY


Note: The actual product is marked differently from the image shown here.


Weight: 0.25 g

G3VM-41DY


Note: The actual product is marked differently from the image shown here.


## - Terminal Arrangement/Internal Connections (Top View)

G3VM-41AY


## ■ PCB Dimensions (Bottom View)

G3VM-41AY


G3VM-41DY



Note: The actual product is marked differently from the image shown here.

- Actual Mounting Pad Dimensions (Recommended Value, Top View)
G3VM-41DY



## Absolute Maximum Ratings ( $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )

| Item |  | Symbol | Rating | Unit | Measurement conditions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Input | LED forward current | $\mathrm{I}_{\mathrm{F}}$ | 30 | mA |  |
|  | Repetitive peak LED forward current | $\mathrm{I}_{\mathrm{FP}}$ | 1 | A | $100 \mu \mathrm{~s}$ pulses, 100 pps |
|  | LED forward current reduction rate | $\Delta I_{F} /{ }^{\circ} \mathrm{C}$ | -0.3 | $\mathrm{mA} /{ }^{\circ} \mathrm{C}$ | $\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$ |
|  | LED reverse voltage | $\mathrm{V}_{\mathrm{R}}$ | 5 | V |  |
|  | Connection temperature | $\mathrm{T}_{\mathrm{j}}$ | 125 | ${ }^{\circ} \mathrm{C}$ |  |
| Output | Load voltage (AC peak/DC) | $\mathrm{V}_{\text {OFF }}$ | 40 | V |  |
|  | Continuous load current (AC peak/DC) | Io | 2,000 | mA |  |
|  | ON current reduction rate | $\Delta \mathrm{I}_{\text {ON }} /{ }^{\circ} \mathrm{C}$ | -20 | $\mathrm{mA} /{ }^{\circ} \mathrm{C}$ | $\mathrm{Ta} \geq 25^{\circ} \mathrm{C}$ |
|  | Pulse ON current | $\mathrm{I}_{\mathrm{OP}}$ | 6 | A | $\mathrm{t}=100 \mathrm{~ms}$, Duty=1/10 |
|  | Connection temperature | $\mathrm{T}_{\mathrm{j}}$ | 125 | ${ }^{\circ} \mathrm{C}$ |  |
| Dielectric strength between input and output (See note 1.) |  | $\mathrm{V}_{1-\mathrm{O}}$ | 5,000 | $\mathrm{V}_{\text {rms }}$ | AC for 1 min |
| Ambient Operating temperature |  | $\mathrm{T}_{\mathrm{a}}$ | -40 to +85 | ${ }^{\circ} \mathrm{C}$ | With no icing or condensation |
| Ambient Storage temperature |  | $\mathrm{T}_{\text {stg }}$ | -55 to +125 | ${ }^{\circ} \mathrm{C}$ | With no icing or condensation |
| Soldering temperature (10 s) |  | --- | 260 | ${ }^{\circ} \mathrm{C}$ | 10 s |

1. The dielectric strength between the input and output was checked by applying voltage between all pins as a group on the LED side and all pins as a group on the light-receiving side.

Electrical Characteristics ( $\mathbf{T a}=\mathbf{2 5}{ }^{\circ} \mathrm{C}$ )

| Item |  | Symbol | Minimum | Typical | Maximum | Unit | Measurement conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input | LED forward voltage | $\mathrm{V}_{\mathrm{F}}$ | 1.45 | 1.63 | 1.75 | V | $\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ |
|  | Reverse current | $\mathrm{I}_{\mathrm{R}}$ | --- | --- | 10 | $\mu \mathrm{A}$ | $\mathrm{V}_{\mathrm{R}}=5 \mathrm{~V}$ |
|  | Capacity between terminals | $\mathrm{C}_{\text {T }}$ | --- | 40 | --- | pF | $\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$ |
|  | Trigger LED forward current | $\mathrm{I}_{\text {FT }}$ | --- | 0.3 | 2 | mA | $\mathrm{I}_{\mathrm{O}}=500 \mathrm{~mA}$ |
| Output | Maximum resistance with output ON | $\mathrm{R}_{\text {ON }}$ | --- | 60 | 100 | $\mathrm{m} \Omega$ | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}, \mathrm{t}<1 \mathrm{~s}$ |
|  |  |  | --- | 90 | 150 |  | $\mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{I}_{\mathrm{O}}=2 \mathrm{~mA}$ |
|  | Current leakage when the relay is open | $\mathrm{I}_{\text {LEAK }}$ | --- | 300 | 1.0 | $\mu \mathrm{A}$ | $\mathrm{V}_{\text {OFF }}=40 \mathrm{~V}$ |
|  | Capacity between terminals | $\mathrm{C}_{\text {OFF }}$ | --- | 130 | --- | pF | $\mathrm{V}=0, \mathrm{f}=1 \mathrm{MHz}$ |
| Capacity between I/O terminals |  | $\mathrm{C}_{\text {- }} \mathrm{O}$ | --- | 0.8 | --- | pF | $\mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{s}}=0 \mathrm{~V}$ |
| Insulation resistance |  | $\mathrm{R}_{1-\mathrm{O}}$ | 1,000 | --- | --- | $\mathrm{M} \Omega$ | $\begin{aligned} & \mathrm{V}_{1-\mathrm{O}}=500 \mathrm{VDC}, \\ & \mathrm{R}_{\mathrm{oH}} \leq 60 \% \end{aligned}$ |
| Turn-ON time |  | $\mathrm{t}_{\text {ON }}$ | --- | 2 | 5 | ms | $\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}, \mathrm{R}_{\mathrm{L}}=200 \Omega, \\ & \mathrm{~V}_{\mathrm{DD}}=20 \mathrm{~V} \text { (See note 2.) } \end{aligned}$ |
| Turn-OFF time |  | $\mathrm{t}_{\text {OFF }}$ | --- | 0.3 | 1 | ms |  |

2. Turn-ON and Turn-OFF Times


Recommended Operating Conditions
Use the G3VM under the following conditions so that the Relay will operate properly.

| Item | Symbol | Minimum | Typical | Maximum | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Load voltage (AC peak/DC) | $\mathrm{V}_{\mathrm{DD}}$ | --- | --- | 32 | V |
| Operating LED forward current | $\mathrm{I}_{\mathrm{F}}$ | 3 | 5 | 15 | mA |
| Continuous load current (AC peak/DC) | $\mathrm{I}_{\mathrm{O}}$ | --- | -- | 2 | A |
| Ambient Operating temperature | $\mathrm{T}_{\mathrm{a}}$ | -20 | --- | 65 | ${ }^{\circ} \mathrm{C}$ |

## - Engineering Data



All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

## ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.

To convert millimeters into inches, multiply by 0.03937 . To convert grams into ounces, multiply by 0.03527 .

## OmROn

OMRON ELECTRONIC COMPONENTS LLC
55 E. Commerce Drive, Suite B
Schaumburg, IL 60173

## OMRON ON-LINE

Global - http://www.omron.com
USA - http://www.components.omron.com

## 847-882-2288

