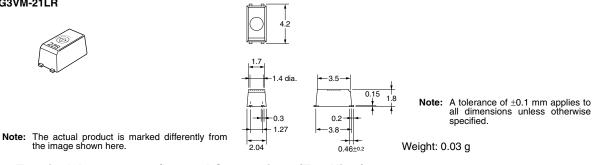
MOS FET Relays M-21LR

World's Smallest SSOP Package MOS FET Relay* with Low Output Capacitance and ON Resistance $(C \times R = 5pF \bullet \dot{\Omega})$ in a 20-V Load Voltage Model

- Output capacitance of 1 pF (typical) allows high frequency applications.
- RoHS Compliant.
- *Information correct as of May, 2007, according to data obtained by OMRON.

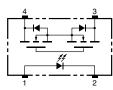
Application Examples

- Semiconductor inspection tools
- Measurement devices and Data loggers
- Broadband systems


List of Models

Contact form Terminals Load voltage (peak value) Model Number per tape SPST-NO 20 VAC G3VM-21LR Surface-mounting ___ terminals G3VM-21LR(TR) 1,500 G3VM-21LR(TR05) 500 G3VM-21LR(TR10) 1,000

Dimensions


Note: All units are in millimeters unless otherwise indicated.

G3VM-21LR

Terminal Arrangement/Internal Connections (Top View)

G3VM-21LR

Actual Mounting Pad Dimensions (Recommended Value, Top View) G3VM-21LR

Note: The actual product is marked differently from the image shown here.

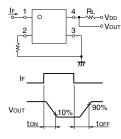
OMRON

■ Absolute Maximum Ratings (Ta = 25°C)

Item		Symbol	Rating	Unit	Measurement conditions	
Input	LED forward current	I _F	50	mA		Note:
	Repetitive peak LED forward current	I _{FP}	1	A	100 μs pulses, 100 pps	
	LED forward current reduction rate	$\Delta I_{F}^{\circ}/C$	-0.5	mA/°C	$T_a \ge 25^{\circ}C$	
	LED reverse voltage	V _R	5	V		
	Connection temperature	T _j	125	°C		
Output	Load voltage (AC peak/DC)	V _{OFF}	20	V		
	Continuous load current	I _o	160	mA		
	ON current reduction rate	$\Delta I_{ON}/^{\circ}C$	-1.6	mA/°C	$T_a \ge 25^{\circ}C$	-
	Connection temperature	Tj	125	°C		
Dielectric strength between input and output (See note 1.)		V _{I-O}	1,500	V _{rms}	AC for 1 min	
Operating temperature		T _a	-20 to +85	°C	With no icing or condensation	
Storage temperature		T _{stg}	-40 to +125	°C	With no icing or condensation	1
Soldering temperature (10 s)			260	°C	10 s	1

The dielectric strength between the input and output was checked by applying voltage be-tween all pins as a group on the LED side and all pins as a group on the light-receiving side.

Electrical Characteristics (Ta = 25°C)


Item		Symbol	Mini- mum	Typical	Maxi- mum	Unit	Measurement conditions		
Input	LED forward voltage	V _F	1.0	1.15	1.3	V	I _F = 10 mA	Note:	
	Reverse current	I _R			10	μA	V _R = 5 V		
	Capacity between terminals	C _T		15		pF	V = 0, f = 1 MHz		
	Trigger LED forward current	I _{FT}			4	mA	l _o = 100 mA		
Output	Maximum resistance with output ON	R _{ON}		5	8	Ω	I _F = 5 mA, I _O = 160 mA, t = 10 ms		
	Current leakage when the relay is open	I _{LEAK}		0.2	1.0	nA	V_{OFF} = 20 V, Ta = 50°C		
	Capacity between terminals	C _{OFF}		1.0	2.5	pF	V = 0, f = 100 MHz, t < 1 s		
Capacit	Capacity between I/O terminals			0.8		pF	f = 1 MHz, V _s = 0 V		
Insulation resistance		R _{I-O}	1,000			MΩ	$\begin{array}{l} V_{I\text{-O}} = 500 \text{ VDC},\\ \text{RoH} \leq 60\% \end{array}$		
Turn-ON time		t _{on}		0.06	0.5	ms	$I_{\rm F} = 10 \text{ mA}, R_{\rm L} = 200 \Omega,$		
Turn-OFF time		t _{OFF}		0.12	0.5	ms	$V_{DD} = 20 V$ (See note 2.)		

Recommended Operating Conditions

Use the G3VM under the following conditions so that the Relay will operate properly.

Item	Symbol	Minimum	Typical	Maximum	Unit
Load voltage (AC peak/DC)	V _{DD}			20	V
Operating LED forward current	I _F	7		30	mA
Continuous load current (AC peak/DC)	I _o			160	mA
Operating temperature	T _a	25		60	°C

2. Turn-ON and Turn-OFF Times

OMRON

Engineering Data

All sales are subject to Omron Electronic Components LLC standard terms and conditions of sale, which can be found at http://www.components.omron.com/components/web/webfiles.nsf/sales_terms.html

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS. To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

55 E. Commerce Drive, Suite B Schaumburg, IL 60173

OMRON ON-LINE

Global - http://www.omron.com USA - http://www.components.omron.com

847-882-2288

Cat. No. X302-E-1

12/10

Specifications subject to change without notice

Printed in USA