

2N7000CSM

MECHANICAL DATA Dimensions in mm (inches)

SOT23 CERAMIC (LCC1 PACKAGE)

Underside View

PAD 1 – Gate PAD 2 – Source PAD 3 – Drain

ABSOLUTE MAXIMUM RATINGS (T_{CASE} = 25°C unless otherwise stated)

			,
V _{DS}	Drain – Source Voltage		60V
V _{GS}	Gate – Source Voltage		±40V
I _D	Drain Current	@ T _{CASE} = 25°C	200mA
I _{DM}	Pulsed Drain Current *		500mA
P _D	Power Dissipation	@ T _{CASE} = 25°C	300mW
Тj	Operating Junction Temperature Range		–55 to 150°C
T _{stg}	Storage Temperature Range		–55 to 150°C

* Pulse width limited by maximum junction temperature.

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

MOS TRANSISTOR

• V_{(BR)DSS} = 60V

- $RDS_{(ON)} = 5\Omega$
- I_D = 200mA
- Hermetic Ceramic Surface Mount
 package

N-CHANNEL ENHANCEMENT MODE

Screening Options Available

2N7000CSM

ELECTRICAL CHARACTERISTICS (T_{CASE} = 25°C unless otherwise stated)

	Parameter	Test Co	Test Conditions		Тур.	Max.	Unit				
	STATIC CHARACTERISTICS										
V _{(BR)DSS}	Drain – Source Breakdown Voltage	$V_{GS} = 0V$	I _D = 10μA	60	70		v				
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$	I _D = 0.25mA	0.8		3.0	v				
I _{GSS}	Gate – Body Leakage Current	$V_{GS} = \pm 20V$	$V_{DS} = 0V$			-10	nA				
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 60V	$V_{GS} = 0V$			1.0	μA				
			T _{CASE} = 125°C			1.0	mA				
I _{D(on)*}	On–State Drain Current	V _{DS} ≥2V _{DS(ON}	$V_{\rm GS} = 4.5 V$	75			mA				
R _{DS(on)*}	Drain – Source On Resistance	V _{GS} = 10V				5	Ω				
		I _D = 0.5A	T _{CASE} = 125°C			9					
V _{DS(on)*}	Drain – Source On Voltage	$V_{GS} = 4.5V$	I _D = 75mA			0.4	V				
		$V_{GS} = 10V$	I _D = 0.5A			2.5					
9 _{FS*}	Forward Transconductance	V _{GS} = 10V	I _D = 0.5A	100			ms				
	DYNAMIC CHARACTERISTICS										
C _{iss}	Input Capacitance	V _{DS} = 25V				60	pF				
C _{oss}	Output Capacitance	$V_{GS} = 0V$	-			25					
C _{rss}	Reverse Transfer Capacitance	f = 1MHz	-			5					
	SWITCHING CHARACTERISTICS										
t _{ON}	Turn–On Time		V _{GEN} = 10V			10	ne				
t _{OFF}	Turn–Off Time	R _L = 150Ω I _D = 0.2A	$R_{G} = 25\Omega$			10	ns				

* Pulse Test: PW = 80 μs , $\delta \leq$ 1%

	Parameter	Min.	Тур.	Max.	Unit
R_{\thetaJA}	Thermal Resistance, Junction to Ambient			416	°C/W

Semelab PIc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.