
2N3634CSM

MECHANICAL DATA Dimensions in mm (inches)

LCC1

Underside View

PAD 1 - Base

PAD 2 – Emitter PAD 3 – Collector

PNP SILICON TRANSISTOR IN A HERMETICALLY SEALED CERAMIC SURFACE MOUNT PACKAGE FOR HIGH RELIABILITY APPLICATIONS

FEATURES

- High Voltage Switching
- Low Power Amplifier Applications
- Hermetic Ceramic Surface Mount Package

APPLICATIONS

- General Purpose
- High Speed Saturated Switching
- Screening Options Available

ABSOLUTE MAXIMUM RATINGS (T_{case} = 25°C unless otherwise stated)

	VCBOCollector – Base Voltage-140VVEBOEmmiter – Base Voltage-5V			
V _{CEO}	Collector – Emitter Voltage	-140V		
V _{CBO}	Collector – Base Voltage	-140V		
V _{EBO}	Emmiter – Base Voltage	-5V		
I _C	Collector Current	-1A		
P _D	Total Device Dissipation @ $T_A = 25^{\circ}C$	1W		
	Derate above 25°C	5.71mW/ °C		
P _D	Total Device Dissipation @ $T_C = 25^{\circ}C$	5W		
	Derate above 25°C	28.6mW / °C		
T_J , T_STG	Operating and Storage Junction Temperature Range	–65 to +200°C		

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

2N3634CSM

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise stated)

	Parameter Test Conditions		Min.	Тур.	Max.	Unit			
OFF CHARACTERISTICS									
BV _{CEO}	Collector–Emitter Breakdown Voltage1	I _C = -10mA	I _B = 0	-140					
BV _{CBO}	Collector – Base Breakdown Voltage	I _C = -100μA	I _E = 0	-140			V		
BV _{EBO}	Emitter – Base Breakdown Voltage	I _C = 0	I _E = -10μA	-5.0					
I _{EBO}	Emitter Cut-off Current	V _{BE} = -3.0V	$I_{\rm C} = 0$			-50	nA		
I _{CBO}	Collector Cut-off Current	V _{CB} = -100V	I _E = 0			-100			
	ON CHARACTERISTICS					1			
h _{FE}	DC Current Gain	I _C = -0.1mA	V _{CE} = -10V	40					
		I _C = -1.0mA	V _{CE} = -10V	45					
		I _C = -10mA	V _{CE} = -10V	50					
		I _C = -50mA	V _{CE} = -10V	50		150			
		I _C = -150mA	V _{CE} = -10V	25					
V _{CE(sat)}	Collector – Emitter Saturation Voltage1	I _C = -10mA	I _B = -1.0mA			-0.3	- V		
		I _C = -50mA	I _B = -5mA			-0.5			
V _{BE(sat)}	Base – Emitter Saturation Voltage	I _C = -10mA	I _B = -1.0mA			-0.8	V		
		I _C = -50mA	I _B = -5mA	-0.65		-0.9			
	SMALL SIGNAL CHARACTERIST	ics							
f _t	Current Gain Bandwidth Product	V _{CE} = -30V	I _C = -30mA	100			MHz		
			f = 100MHz						
C _{ob}	Output Capacitance	V _{CB} = -20V	I _E = 0			10	pF		
			f = 100kHz						
C _{ib}	Input Capacitance	V _{BE} = 1.0V	I _C = 0			75	pF		
			f = 1.0MHz						
h _{ie}	Input Impedance			100		600	Ω		
h _{re}	Voltage Feedback Ratio	V _{CE} = -10V	I _C = -10mA			3.0	x10 ⁻⁴		
h _{fe}	Small Signal Current Gain		f = 1.0kHz		40	160	—		
h _{oe}	Output Admittance					200	μmhos		
NF	Noise Figure	V _{CE} = -10V	I _C = -0.5mA			3.0	dB		
		R _S = 1.0KΩ	f = 1.0kHz						
	SWITCHING CHARACTERISTICS	·				·			
t _{on}	Turn–On Time	V _{CC} = -100V	$V_{BE} = 4.0V$		400	ns			
t _{off}	Turn–Off Time	I _C = -50mA	$I_{B1} = I_{B2} = -5mA$		600				

1) Pulse test : Pulse Width < 300μ s ,Duty Cycle < 2%

Semelab Plc reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.