### **TetraFET**

# **D1013UK**

METAL GATE RF SILICON FET

# GOLD METALLISED **MULTI-PURPOSE SILICON DMOS RF FET** 20W – 28V – 500MHz SINGLE ENDED

### **FEATURES**

- SIMPLIFIED AMPLIFIER DESIGN
- SUITABLE FOR BROAD BAND APPLICATIONS
- LOW Cree
- USEFUL Po AT 1GHz
- LOW NOISE
- HIGH GAIN 13 dB MINIMUM

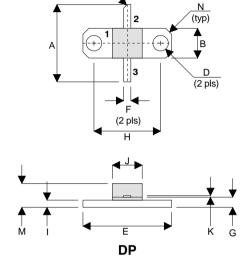
### APPLICATIONS

 HF/VHF/UHF COMMUNICATIONS from 1 MHz to 1 GHz

## ABSOLUTE MAXIMUM RATINGS (T<sub>case</sub> = 25°C unless otherwise stated)

| P <sub>D</sub>      | Power Dissipation                      | 50W          |
|---------------------|----------------------------------------|--------------|
| BV <sub>DSS</sub>   | Drain – Source Breakdown Voltage       | 70V          |
| BV <sub>GSS</sub>   | Gate – Source Breakdown Voltage        | ±20V         |
| I <sub>D(sat)</sub> | Drain Current                          | 5A           |
| T <sub>stg</sub>    | Storage Temperature                    | –65 to 150°C |
| Тj                  | Maximum Operating Junction Temperature | 200°C        |

Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.


Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk



**MECHANICAL DATA** 

С



| PIN 1 | SOURCE | PIN 2 | DRAIN |
|-------|--------|-------|-------|
|       | CATE   |       |       |

| DIM | mm         | Tol. | Inches      | Tol.  |
|-----|------------|------|-------------|-------|
| Α   | 16.51      | 0.25 | 0.650       | 0.010 |
| В   | 6.35       | 0.13 | 0.250       | 0.005 |
| С   | 45°        | 5°   | 45°         | 5°    |
| D   | 3.30       | 0.13 | 0.130       | 0.005 |
| Е   | 18.92      | 0.08 | 0.745       | 0.003 |
| F   | 1.52       | 0.13 | 0.060       | 0.005 |
| G   | 2.16       | 0.13 | 0.085       | 0.005 |
| н   | 14.22      | 0.08 | 0.560       | 0.003 |
| 1   | 1.52       | 0.13 | 0.060       | 0.005 |
| J   | 6.35       | 0.13 | 0.250       | 0.005 |
| к   | 0.13       | 0.03 | 0.005       | 0.001 |
| М   | 5.08       | 0.51 | 0.200       | 0.020 |
| N   | 1.27 x 45° | 0.13 | 0.050 x 45° | 0.005 |



| <b>ELECTRICAL CHARACTERISTICS</b> (T | $c_{ase} = 25^{\circ}C$ unless otherwise stated) |
|--------------------------------------|--------------------------------------------------|
|--------------------------------------|--------------------------------------------------|

| Parameter           |                              | Test Conditions       |                       |                   | Min. | Тур. | Max. | Unit |
|---------------------|------------------------------|-----------------------|-----------------------|-------------------|------|------|------|------|
| BV                  | Drain-Source                 | $V_{GS} = 0$          | I                     | 100mA             | 70   |      |      | V    |
| BV <sub>DSS</sub>   | Breakdown Voltage            | VGS – 0               | - D                   | TUUIIIA           | 70   |      |      | V    |
| 1                   | Zero Gate Voltage            | <u> </u>              | V V <sub>GS</sub> = 0 |                   |      | 1    | mA   |      |
| IDSS                | Drain Current                | V <sub>DS</sub> = 28V |                       | = 0               |      |      | I    |      |
| I <sub>GSS</sub>    | Gate Leakage Current         | $V_{GS} = 20V$        | V <sub>DS</sub>       | = 0               |      |      | 1    | μA   |
| V <sub>GS(th)</sub> | Gate Threshold Voltage*      | I <sub>D</sub> = 10mA | V <sub>DS</sub>       | = V <sub>GS</sub> | 1    |      | 7    | V    |
| 9 <sub>fs</sub>     | Forward Transconductance*    | V <sub>DS</sub> = 10V | I <sub>D</sub> =      | 1A                | 0.8  |      |      | S    |
| G <sub>PS</sub>     | Common Source Power Gain     | P <sub>O</sub> = 20W  |                       |                   | 13   |      |      | dB   |
| η                   | Drain Efficiency             | V <sub>DS</sub> = 28V | I <sub>DQ</sub>       | = 0.2A            | 50   |      |      | %    |
| VSWR                | Load Mismatch Tolerance      | f = 500MHz            | Z                     |                   | 20:1 |      |      | _    |
| C <sub>iss</sub>    | Input Capacitance            | V <sub>DS</sub> = 28V | $V_{GS} = -5V$        | f = 1MHz          |      |      | 60   | pF   |
| C <sub>oss</sub>    | Output Capacitance           | V <sub>DS</sub> = 28V | $V_{GS} = 0$          | f = 1MHz          |      |      | 30   | pF   |
| C <sub>rss</sub>    | Reverse Transfer Capacitance | V <sub>DS</sub> = 28V | $V_{GS} = 0$          | f = 1MHz          |      |      | 2.5  | pF   |

Pulse Duration = 300  $\mu s$  , Duty Cycle  $\leq 2\%$ \* Pulse Test:

#### HAZARDOUS MATERIAL WARNING

The ceramic portion of the device between leads and metal flange is beryllium oxide. Beryllium oxide dust is highly toxic and care must be taken during handling and mounting to avoid damage to this area.

#### THESE DEVICES MUST NEVER BE THROWN AWAY WITH GENERAL INDUSTRIAL OR DOMESTIC WASTE.

#### THERMAL DATA

| R <sub>THj-case</sub> | Thermal Resistance Junction – Case | Max. 3.5°C / W |
|-----------------------|------------------------------------|----------------|
|-----------------------|------------------------------------|----------------|

Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.



**D1013UK** 

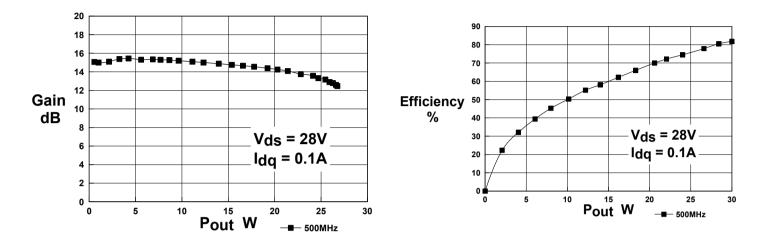
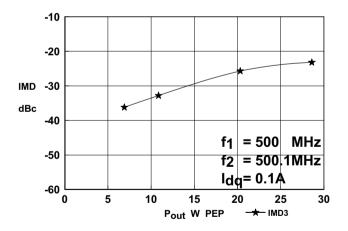
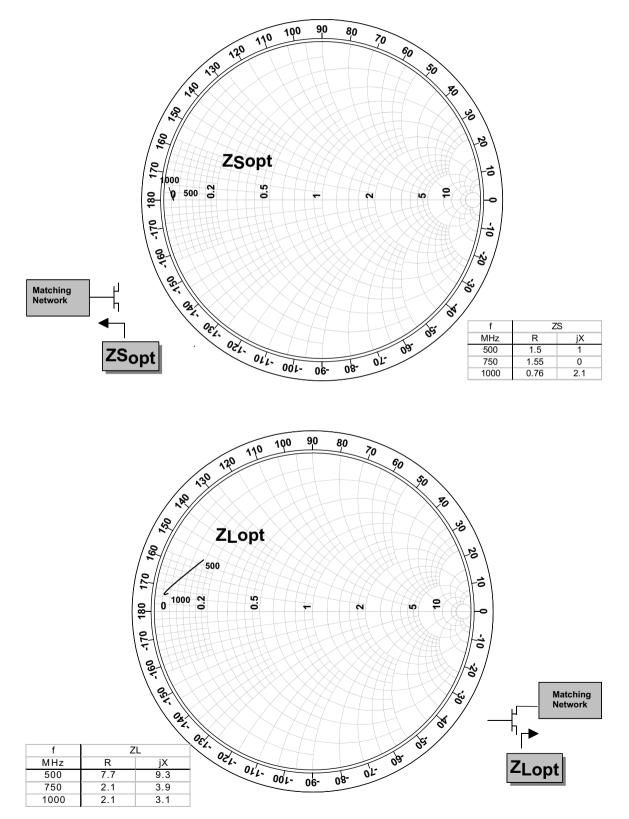




Figure 1 Gain vs. Output Power

Figure 2 Efficiency vs. Output Power



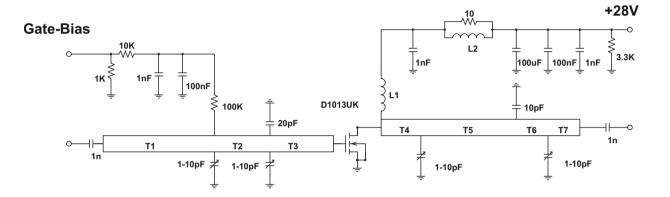



Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.



**D1013UK** 




Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.

Semelab plc. Telephone +44(0)1455 556565. Fax +44(0)1455 552612. E-mail: sales@semelab.co.uk

Website: http://www.semelab.co.uk



# D1013UK



## **500MHz Test Fixture**

Substrate 0.8 mm FR4, Er = 2.2All microstrip lines W = 2.2mm

- T1 35mm
- T2 15mm
- T3 10mm
- T4 14mm
- T5 30mm
- T6 6mm
- T7 12.5mm
- L1 5.5 turns 20swg enamelled copper wire 7mm i.d.
- L2 1.5 turns 24swg enamelled copper wire on Siemens B62152A7X 2 hole

Semelab Ltd reserves the right to change test conditions, parameter limits and package dimensions without notice. Information furnished by Semelab is believed to be both accurate and reliable at the time of going to press. However Semelab assumes no responsibility for any errors or omissions discovered in its use. Semelab encourages customers to verify that datasheets are current before placing orders.