

S-5716 Series

LOW CURRENT CONSUMPTION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC

www.sii-ic.com

© Seiko Instruments Inc., 2011-2013

Rev.1.4 00

The S-5716 Series, developed by CMOS technology, is a high-accuracy Hall IC that operates with low current consumption. The output voltage changes when the S-5716 Series detects the intensity level of magnetic flux density. Using the S-5716 Series with a magnet makes it possible to detect the open / close in various devices.

High-density mounting is possible by using the small SOT-23-3 package or the super small SNT-4A package.

Due to its high-accuracy magnetic characteristics, the S-5716 Series can make operation's dispersion in the system combined with magnet smaller.

Caution This product is intended to use in general electronic devices such as consumer electronics, office equipment, and communications devices. Before using the product in medical equipment or automobile equipment including car audio, keyless entry and engine control unit, contact to SII is indispensable.

■ Features

• Pole detection*1: Detection of both poles, S pole or N pole

• Detection logic for magnetism*1: Active "L", active "H"

• Output form*1: Nch open-drain output, CMOS output

• Magnetic sensitivity*¹: B_{OP} = 1.8 mT typ.

 B_{OP} = 3.0 mT typ. B_{OP} = 4.5 mT typ. B_{OP} = 7.0 mT typ.

• Operating cycle (current consumption): Product with both poles detection

 t_{CYCLE} = 50.50 ms (I_{DD} = 4.0 μ A) typ. Product with S pole or N pole detection t_{CYCLE} = 50.85 ms (I_{DD} = 2.6 μ A) typ.

Power supply voltage range: V_{DD} = 2.7 V to 5.5 V
 Operation temperature range: Ta = -40°C to +85°C

• Lead-free (Sn 100%), halogen-free

*1. The option can be selected.

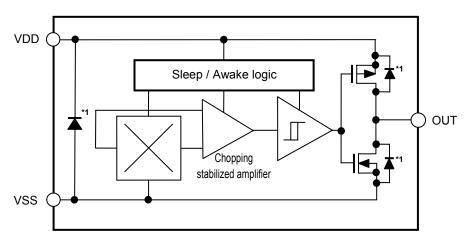
■ Applications


- · Plaything, portable game
- Home appliance
- Housing equipment
- · Industrial equipment

■ Packages

- SOT-23-3
- SNT-4A

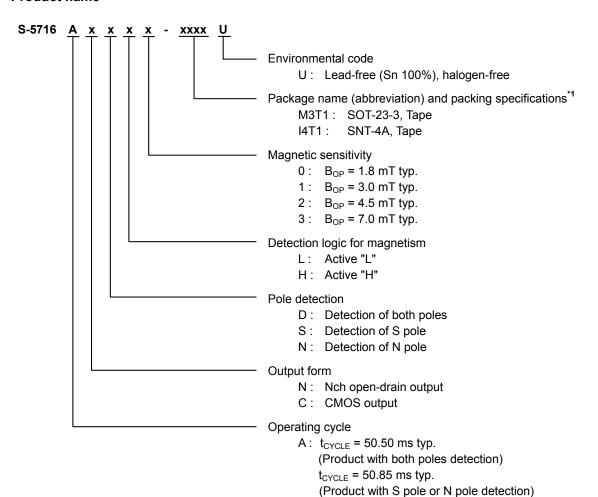
■ Block Diagrams


1. Nch open-drain output product

*1. Parasitic diode

Figure 1

2. CMOS output product



*1. Parasitic diode

Figure 2

■ Product Name Structure

1. Product name

^{*1.} Refer to the tape drawing.

2. Packages

Table 1 Package Drawing Codes

Package name	Package name Dimension		Reel	Land
SOT-23-3	MP003-C-P-SD	MP003-C-C-SD	MP003-Z-R-SD	_
SNT-4A	PF004-A-P-SD	PF004-A-C-SD	PF004-A-R-SD	PF004-A-L-SD

LOW CURRENT CONSUMPTION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC S-5716 Series Rev.1.4_00

3. Product name list

3. 1 SOT-23-3

3. 1. 1 Nch open-drain output product

Table 2

Product Name	Operating Cycle (t _{CYCLE})	Output Form	Pole Detection	Detection Logic for Magnetism	Magnetic Sensitivity (B _{OP})
S-5716ANDL0-M3T1U	50.50 ms typ.	Nch open-drain output	Both poles	Active "L"	1.8 mT typ.
S-5716ANDL1-M3T1U	50.50 ms typ.	Nch open-drain output	Both poles	Active "L"	3.0 mT typ.
S-5716ANDL2-M3T1U	50.50 ms typ.	Nch open-drain output	Both poles	Active "L"	4.5 mT typ.
S-5716ANDL3-M3T1U	50.50 ms typ.	Nch open-drain output	Both poles	Active "L"	7.0 mT typ
S-5716ANSL0-M3T1U	50.85 ms typ.	Nch open-drain output	S pole	Active "L"	1.8 mT typ.
S-5716ANSL1-M3T1U	50.85 ms typ.	Nch open-drain output	S pole	Active "L"	3.0 mT typ.
S-5716ANSL2-M3T1U	50.85 ms typ.	Nch open-drain output	S pole	Active "L"	4.5 mT typ.

Remark Please contact our sales office for products other than the above.

3. 1. 2 CMOS output product

Table 3

Product Name	Operating Cycle (t _{CYCLE})	Output Form	Pole Detection	Detection Logic for Magnetism	Magnetic Sensitivity (B _{OP})
S-5716ACDL0-M3T1U	50.50 ms typ.	CMOS output	Both poles	Active "L"	1.8 mT typ.
S-5716ACDL1-M3T1U	50.50 ms typ.	CMOS output	Both poles	Active "L"	3.0 mT typ.
S-5716ACDL2-M3T1U	50.50 ms typ.	CMOS output	Both poles	Active "L"	4.5 mT typ.
S-5716ACDL3-M3T1U	50.50 ms typ.	CMOS output	Both poles	Active "L"	7.0 mT typ
S-5716ACDH0-M3T1U	50.50 ms typ.	CMOS output	Both poles	Active "H"	1.8 mT typ.
S-5716ACDH1-M3T1U	50.50 ms typ.	CMOS output	Both poles	Active "H"	3.0 mT typ.
S-5716ACDH2-M3T1U	50.50 ms typ.	CMOS output	Both poles	Active "H"	4.5 mT typ.
S-5716ACSL0-M3T1U	50.85 ms typ.	CMOS output	S pole	Active "L"	1.8 mT typ.
S-5716ACSL1-M3T1U	50.85 ms typ.	CMOS output	S pole	Active "L"	3.0 mT typ.
S-5716ACSL2-M3T1U	50.85 ms typ.	CMOS output	S pole	Active "L"	4.5 mT typ.

Remark Please contact our sales office for products other than the above.

3. 2 SNT-4A

3. 2. 1 Nch open-drain output product

Table 4

Product Name	Operating Cycle (t _{CYCLE})	Output Form	Pole Detection	Detection Logic for Magnetism	Magnetic Sensitivity (B _{OP})
S-5716ANDL0-I4T1U	50.50 ms typ.	Nch open-drain output	Both poles	Active "L"	1.8 mT typ.
S-5716ANDL1-I4T1U	50.50 ms typ.	Nch open-drain output	Both poles	Active "L"	3.0 mT typ.
S-5716ANDL2-I4T1U	50.50 ms typ.	Nch open-drain output	Both poles	Active "L"	4.5 mT typ.
S-5716ANSL1-I4T1U	50.85 ms typ.	Nch open-drain output	S pole	Active "L"	3.0 mT typ.
S-5716ANSL2-I4T1U	50.85 ms typ.	Nch open-drain output	S pole	Active "L"	4.5 mT typ.

Remark Please contact our sales office for products other than the above.

3. 2. 2 CMOS output product

Table 5

Product Name	Operating Cycle (t _{CYCLE})	Output Form	Pole Detection	Detection Logic for Magnetism	Magnetic Sensitivity (B _{OP})
S-5716ACDL0-I4T1U	50.50 ms typ.	CMOS output	Both poles	Active "L"	1.8 mT typ.
S-5716ACDL1-I4T1U	50.50 ms typ.	CMOS output	Both poles	Active "L"	3.0 mT typ.
S-5716ACDL2-I4T1U	50.50 ms typ.	CMOS output	Both poles	Active "L"	4.5 mT typ.
S-5716ACDH0-I4T1U	50.50 ms typ.	CMOS output	Both poles	Active "H"	1.8 mT typ.
S-5716ACDH1-I4T1U	50.50 ms typ.	CMOS output	Both poles	Active "H"	3.0 mT typ.
S-5716ACDH2-I4T1U	50.50 ms typ.	CMOS output	Both poles	Active "H"	4.5 mT typ.
S-5716ACSL0-I4T1U	50.85 ms typ.	CMOS output	S pole	Active "L"	1.8 mT typ.
S-5716ACSL1-I4T1U	50.85 ms typ.	CMOS output	S pole	Active "L"	3.0 mT typ.
S-5716ACSL2-I4T1U	50.85 ms typ.	CMOS output	S pole	Active "L"	4.5 mT typ.
S-5716ACSH0-I4T1U	50.85 ms typ.	CMOS output	S pole	Active "H"	1.8 mT typ.

Remark Please contact our sales office for products other than the above.

■ Pin Configurations

1. SOT-23-3

Top view

Figure 3

Table 6

Pin No.	Symbol	Description
1	VSS	GND pin
2	VDD	Power supply pin
3	OUT	Output pin

2. SNT-4A

Top view

Figure 4

Table 7

Pin No.	Symbol	Description			
1	VDD	Power supply pin			
2	VSS	GND pin			
3	NC ^{*1}	No connection			
4	OUT	Output pin			

^{*1.} The NC pin is electrically open.

The NC pin can be connected to the VDD pin or the VSS pin.

■ Absolute Maximum Ratings

Table 8

(Ta = $+25^{\circ}$ C unless otherwise specified)

	Item	Symbol	Absolute Maximum Rating	Unit
Power supply voltage	ge	V_{DD}	$V_{SS} - 0.3 \text{ to } V_{SS} + 7.0$	V
Output current		I _{OUT}	±2.0	mA
Output voltage	Nch open-drain output product	V	$V_{SS} - 0.3 \text{ to } V_{SS} + 7.0$	V
Output voltage	CMOS output product	V _{OUT}	$V_{SS} - 0.3$ to $V_{DD} + 0.3$	V
Power dissipation	SOT-23-3	D	430 ^{*1}	mW
SNT-4A		P _D	300 ^{*1}	mW
Operation ambient temperature		T _{opr}	−40 to +85	°C
Storage temperatur	·e	T _{stg}	-40 to +125	°C

^{*1.} When mounted on board

[Mounted board]

(1) Board size: 114.3 mm \times 76.2 mm \times t1.6 mm (2) Name: JEDEC STANDARD51-7

Caution The absolute maximum ratings are rated values exceeding which the product could suffer physical damage. These values must therefore not be exceeded under any conditions.

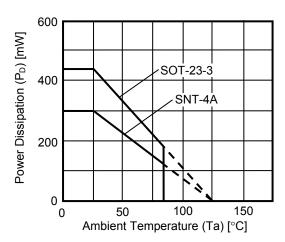


Figure 5 Power Dissipation of Package (When Mounted on Board)

■ Electrical Characteristics

1. Product with both poles detection

Symbol

 V_{DD}

1. 1 S-5716AxDxx

Item

Power supply voltage

Table 9

Test Unit Condition Min. Тур. Max. Circuit 2.7 5.0 5.5

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

I_{DD}	Average value			4.0	8.0	μΑ	1
	Nch open-drain output product	Output transistor Nch, I _{OUT} = 2 mA	_	_	0.4	٧	2
V _{OUT}	CMOS output product	Output transistor Nch, I _{OUT} = 2 mA	_	_	0.4	٧	2
CMOS	CiviOS output product	Output transistor Pch, I _{OUT} = -2 mA	V _{DD} – 0.4	-	_	٧	3
I _{LEAK}	1		_	_	1	μΑ	4
t _{AW}		_	_	0.10	_	ms	-
t _{SL}		-	50.40	-	ms	_	
t _{CYCLE}	t _{AW} + t _{SL}	_	50.50	100.00	ms	-	
	V _{OUT} I _{LEAK} t _{AW} t _{SL}	Nch open-drain output product Vout CMOS output product ILEAK Nch open-drain output product output transistor Nch, Name to the second secon	$V_{\text{OUT}} \begin{tabular}{l l} Nch open-drain \\ output product \end{tabular} \begin{tabular}{l l} Output transistor Nch, \\ I_{OUT} = 2 mA \end{tabular} \begin{tabular}{l l} Output transistor Nch, \\ I_{OUT} = 2 mA \end{tabular} \begin{tabular}{l l} Output transistor Nch, \\ I_{OUT} = 2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = 5.5 \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = 5.5 \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA \end{tabular} \begin{tabular}{l l} Output transistor Pch, \\ I_{OUT} = -2 mA tabula$	$V_{OUT} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$V_{OUT} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$V_{OUT} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$V_{OUT} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$

2. Product with S pole or N pole detection

2. 1 S-5716AxSxx, S-5716AxNxx

Table 10

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item	Symbol	Con	dition	Min.	Тур.	Max.	Unit	Test Circuit
Power supply voltage	V_{DD}		_	2.7	5.0	5.5	V	_
Current consumption	I_{DD}	Average value		_	2.6	5.0	μΑ	1
Output voltage V _{OUT}		Nch open-drain output product	Output transistor Nch, I _{OUT} = 2 mA	_	_	0.4	>	2
	V _{OUT}	CMOS output product	Output transistor Nch, I _{OUT} = 2 mA	_	-	0.4	>	2
		CMOS output product Output transistor Pch, $I_{OUT} = -2 \text{ mA}$		V _{DD} – 0.4	_	_	>	3
Leakage current	I _{LEAK}	Nch open-drain output p Output transistor Nch, \		-	-	1	μΑ	4
Awake mode time	t _{AW}		-		0.05	_	ms	_
Sleep mode time	t _{SL}	-		_	50.80	_	ms	_
Operating cycle	t _{CYCLE}	$t_{AW} + t_{SL}$		_	50.85	100.00	ms	_

LOW CURRENT CONSUMPTION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC S-5716 Series Rev.1.4_00

■ Magnetic Characteristics

1. Product with both poles detection

1. 1 Product with $B_{OP} = 1.8 \text{ mT typ.}$

Table 11

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	_	0.9	1.8	2.7	mT	5
Operation point	N pole	B _{OPN}	_	-2.7	-1.8	-0.9	mT	5
Release point*2	S pole	B _{RPS}	_	0.3	1.2	2.2	mT	5
Release point	N pole	B _{RPN}	_	-2.2	-1.2	-0.3	mT	5
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	ı	0.6	ı	mT	5
mysteresis width	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $		0.6		mT	5

1. 2 Product with $B_{OP} = 3.0 \text{ mT typ.}$

Table 12

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

()				0, 100	0.0 ., . 33			
Item	Item		Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	_	1.4	3.0	4.0	mT	5
Operation point	N pole	B _{OPN}	_	-4.0	-3.0	-1.4	mT	5
Release point*2	S pole	B _{RPS}	_	1.1	2.2	3.7	mT	5
Release point	N pole	B _{RPN}	_	-3.7	-2.2	-1.1	mT	5
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	- 1	0.8	_	mT	5
mysteresis width	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	_	0.8	_	mT	5

1. 3 Product with $B_{OP} = 4.5 \text{ mT typ.}$

Table 13

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	_	2.5	4.5	6.0	mT	5
Operation point	N pole	B _{OPN}	_	-6.0	-4.5	-2.5	mT	5
Release point*2	S pole	B _{RPS}	_	2.0	3.5	5.5	mT	5
Release point	N pole	B _{RPN}	_	-5.5	-3.5	-2.0	mT	5
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	-	1.0	ı	mT	5
mysteresis width	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	_	1.0	-	mT	5

1. 4 Product with $B_{OP} = 7.0 \text{ mT typ.}$

Table 14

(Ta = $+25^{\circ}$ C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

			\1\u00e4	<u>, , , , , , , , , , , , , , , , , , , </u>	0.0 1, 133	0 1 01110	00 0411011	moo opoomoa,
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	-	5.0	7.0	8.5	mT	5
Operation point	N pole	B _{OPN}	_	-8.5	-7.0	-5.0	mT	5
Release point*2	S pole	B _{RPS}	_	3.7	5.2	7.2	mT	5
Release point	N pole	B_RPN	_	-7.2	-5.2	-3.7	mT	5
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	-	1.8	_	mT	5
mysteresis width	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	_	1.8	_	mT	5

2. Product with S pole detection

2. 1 Product with $B_{OP} = 1.8 \text{ mT typ.}$

Table 15

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	_	0.9	1.8	2.7	mT	5
Release point*2	S pole	B _{RPS}	_	0.3	1.2	2.2	mT	5
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	ı	0.6	ı	mT	5

2. 2 Product with $B_{OP} = 3.0 \text{ mT typ.}$

Table 16

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	-	1.4	3.0	4.0	mT	5
Release point*2	S pole	B _{RPS}	_	1.1	2.2	3.7	mT	5
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	_	0.8	_	mT	5

2. 3 Product with $B_{OP} = 4.5 \text{ mT typ.}$

Table 17

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	-	2.5	4.5	6.0	mT	5
Release point*2	S pole	B _{RPS}	_	2.0	3.5	5.5	mT	5
Hysteresis width*3	S pole	B _{HYSS}	$B_{HYSS} = B_{OPS} - B_{RPS}$	_	1.0	_	mT	5

2. 4 Product with $B_{OP} = 7.0 \text{ mT typ.}$

Table 18

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

					, 00			
Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	S pole	B _{OPS}	_	5.0	7.0	8.5	mT	5
Release point*2	S pole	B _{RPS}	_	3.7	5.2	7.2	mT	5
Hysteresis width*3	S pole	B _{HYSS}	B _{HYSS} = B _{OPS} - B _{RPS}	_	1.8	_	mT	5

LOW CURRENT CONSUMPTION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC S-5716 Series Rev.1.4_00

3. Product with N pole detection

3. 1 Product with $B_{OP} = 1.8 \text{ mT typ.}$

Table 19

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	B _{OPN}	_	-2.7	-1.8	-0.9	mT	5
Release point*2	N pole	B _{RPN}	_	-2.2	-1.2	-0.3	mT	5
Hysteresis width*3	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	ı	0.6	_	mT	5

3. 2 Product with $B_{OP} = 3.0 \text{ mT typ.}$

Table 20

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	B _{OPN}	-	-4.0	-3.0	-1.4	mT	5
Release point*2	N pole	B _{RPN}	_	-3.7	-2.2	-1.1	mT	5
Hysteresis width*3	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	_	0.8	_	mT	5

3. 3 Product with $B_{OP} = 4.5 \text{ mT typ.}$

Table 21

(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	B _{OPN}	_	-6.0	-4.5	-2.5	mT	5
Release point*2	N pole	B _{RPN}	_	-5.5	-3.5	-2.0	mT	5
Hysteresis width*3	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	_	1.0	_	mT	5

3. 4 Product with $B_{OP} = 7.0 \text{ mT typ.}$

Table 22

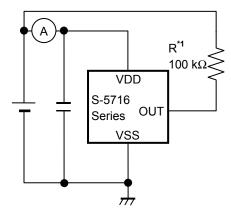
(Ta = +25°C, V_{DD} = 5.0 V, V_{SS} = 0 V unless otherwise specified)

Item		Symbol	Condition	Min.	Тур.	Max.	Unit	Test Circuit
Operation point*1	N pole	B _{OPN}	_	-8.5	-7.0	-5.0	mT	5
Release point*2	N pole	B _{RPN}	_	-7.2	-5.2	-3.7	mT	5
Hysteresis width*3	N pole	B _{HYSN}	$B_{HYSN} = B_{OPN} - B_{RPN} $	ı	1.8	ı	mT	5

*1. B_{OPN}, B_{OPS}: Operation points

 B_{OPN} and B_{OPS} are the values of magnetic flux density when the output voltage (V_{OUT}) is inverted after the magnetic flux density applied to the S-5716 Series by the magnet (N pole or S pole) is increased (the magnet is moved closer). Even when the magnetic flux density exceeds B_{OPN} or B_{OPS} , V_{OUT} retains the status.

***2.** B_{RPN}, B_{RPS}: Release points


 B_{RPN} and B_{RPS} are the values of magnetic flux density when the output voltage (V_{OUT}) is inverted after the magnetic flux density applied to the S-5716 Series by the magnet (N pole or S pole) is decreased (the magnet is moved further away). Even when the magnetic flux density falls below B_{RPN} or B_{RPS} , V_{OUT} retains the status.

***3.** B_{HYSN}, B_{HYSS}: Hysteresis widths

B_{HYSN} and B_{HYSS} are the difference between B_{OPN} and B_{RPN}, and B_{OPS} and B_{RPS}, respectively.

Remark The unit of magnetic density mT can be converted by using the formula 1 mT = 10 Gauss.

■ Test Circuits

*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 6 Test Circuit 1

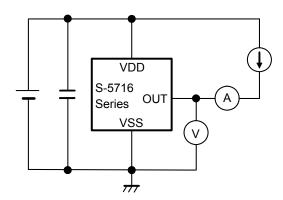


Figure 7 Test Circuit 2

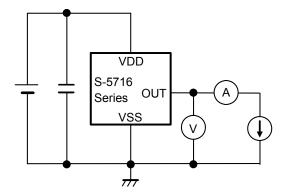
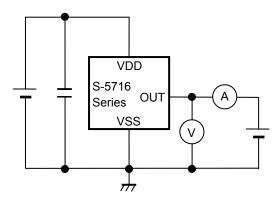
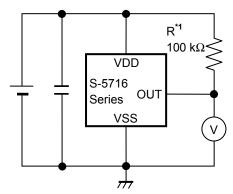
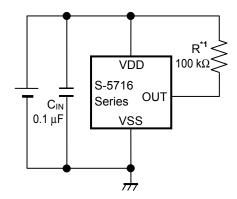


Figure 8 Test Circuit 3


Figure 9 Test Circuit 4

*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 10 Test Circuit 5

■ Standard Circuit

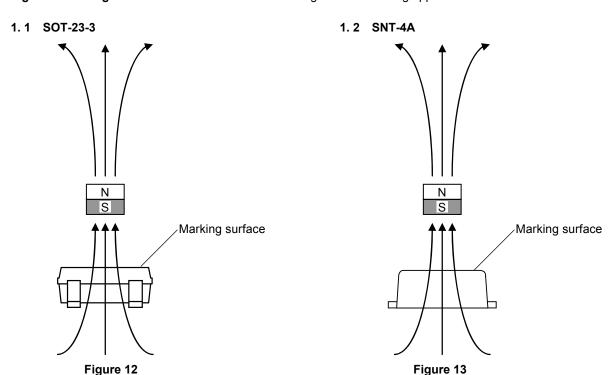
*1. Resistor (R) is unnecessary for the CMOS output product.

Figure 11

Caution The above connection diagram and constant will not guarantee successful operation. Perform thorough evaluation using the actual application to set the constant.

■ Operation

1. Direction of applied magnetic flux


The S-5716 Series detects the magnetic flux density which is vertical to the marking surface.

In product with both poles detection, the output voltage (V_{OUT}) is inverted when the S pole or N pole is moved closer to the marking surface.

In product with S pole detection, V_{OUT} is inverted when the S pole is moved closer to the marking surface.

In product with N pole detection, V_{OUT} is inverted when the N pole is moved closer to the marking surface.

Figure 12 and Figure 13 show the direction in which magnetic flux is being applied.

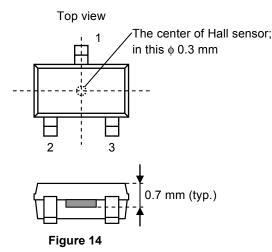

2. Position of Hall sensor

Figure 14 and Figure 15 show the position of Hall sensor.

The center of this Hall sensor is located in the area indicated by a circle, which is in the center of a package as described below.

The following also shows the distance (typ. value) between the marking surface and the chip surface of a package.

2. 1 SOT-23-3

2. 2 SNT-4A

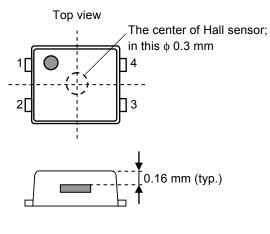


Figure 15

3. Basic operation

The S-5716 Series changes the output voltage level (V_{OUT}) according to the level of the magnetic flux density (N pole or S pole) applied by a magnet.

The following explains the operation when the magnetism detection logic is active "L".

3. 1 Product with both poles detection

When the magnetic flux density vertical to the marking surface exceeds the operation point (B_{OPN} or B_{OPS}) after the S pole or N pole of a magnet is moved closer to the marking surface of the S-5716 Series, V_{OUT} changes from "H" to "L". When the S pole or N pole of a magnet is moved further away from the marking surface of the S-5716 Series and the magnetic flux density is lower than the release point (B_{RPN} or B_{RPS}), V_{OUT} changes from "L" to "H". Figure 16 shows the relationship between the magnetic flux density and V_{OUT} .

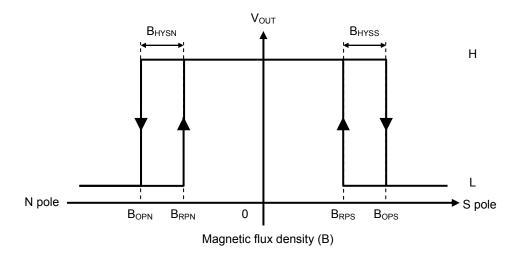


Figure 16

3. 2 Product with S pole detection

When the magnetic flux density vertical to the marking surface exceeds B_{OPS} after the S pole of a magnet is moved closer to the marking surface of the S-5716 Series, V_{OUT} changes from "H" to "L". When the S pole of a magnet is moved further away from the marking surface of the S-5716 Series and the magnetic flux density is lower than B_{RPS} , V_{OUT} changes from "L" to "H".

Figure 17 shows the relationship between the magnetic flux density and V_{OUT}.

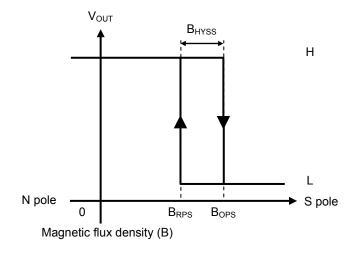


Figure 17

3. 3 Product with N pole detection

When the magnetic flux density vertical to the marking surface exceeds B_{OPN} after the N pole of a magnet is moved closer to the marking surface of the S-5716 Series, V_{OUT} changes from "H" to "L". When the N pole of a magnet is moved further away from the marking surface of the S-5716 Series and the magnetic flux density is lower than B_{RPN} , V_{OUT} changes from "L" to "H".

Figure 18 shows the relationship between the magnetic flux density and V_{OUT} .

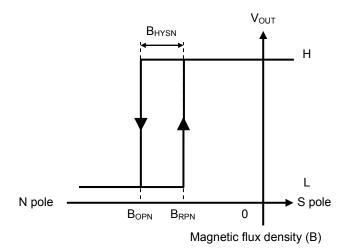
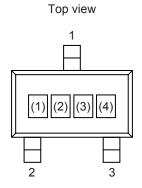


Figure 18

16


LOW CURRENT CONSUMPTION BOTH POLES / UNIPOLAR DETECTION TYPE HALL IC Rev. 1.4_00 S-5716 Series

■ Precautions

- If the impedance of the power supply is high, the IC may malfunction due to a supply voltage drop caused by feed-through current. Take care with the pattern wiring to ensure that the impedance of the power supply is low.
- Note that the IC may malfunction if the power supply voltage rapidly changes.
- Do not apply an electrostatic discharge to this IC that exceeds the performance ratings of the built-in electrostatic protection circuit.
- Large stress on this IC may affect on the magnetic characteristics. Avoid large stress which is caused by bend and distortion during mounting the IC on a board or handle after mounting.
- SII claims no responsibility for any disputes arising out of or in connection with any infringement by products including this IC of patents owned by a third party.

■ Marking Specifications

1. SOT-23-3

(1) to (3): Product code (Refer to **Product name vs. Product code**.)

(4): Lot numbe

Product name vs. Product code

1. 1 Nch open-drain output product

Product Name	Product Code				
Floudet Name	(1)	(2)	(3)		
S-5716ANDL0-M3T1U	Х	3	С		
S-5716ANDL1-M3T1U	Χ	2	D		
S-5716ANDL2-M3T1U	Χ	3	E		
S-5716ANDL3-M3T1U	Χ	3	М		
S-5716ANSL0-M3T1U	Χ	3	K		
S-5716ANSL1-M3T1U	Χ	2	E		
S-5716ANSL2-M3T1U	Х	3	G		

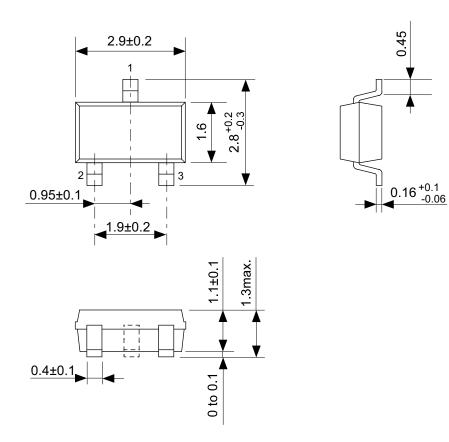
1. 2 CMOS output product

Product Name	Pro	oduct Co	de
Floduct Name	(1)	(2)	(3)
S-5716ACDL0-M3T1U	Х	3	В
S-5716ACDL1-M3T1U	Χ	2	F
S-5716ACDL2-M3T1U	Х	3	D
S-5716ACDL3-M3T1U	Χ	3	J
S-5716ACDH0-M3T1U	Χ	3	Η
S-5716ACDH1-M3T1U	Χ	3	Α
S-5716ACDH2-M3T1U	Χ	3	I
S-5716ACSL0-M3T1U	Χ	3	L
S-5716ACSL1-M3T1U	Χ	2	G
S-5716ACSL2-M3T1U	Χ	3	F

2. SNT-4A

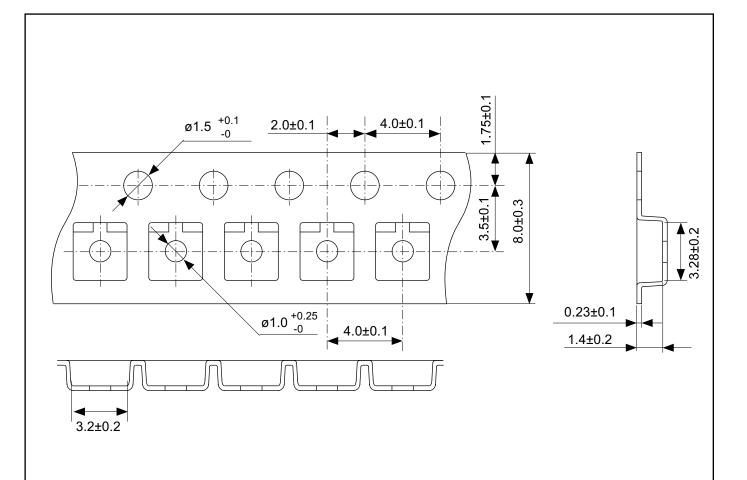
Top view

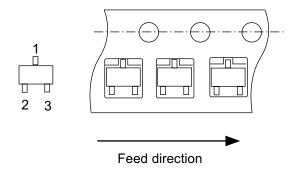
(1) to (3): Product code (Refer to **Product name vs. Product code**.)


Product name vs. Product code

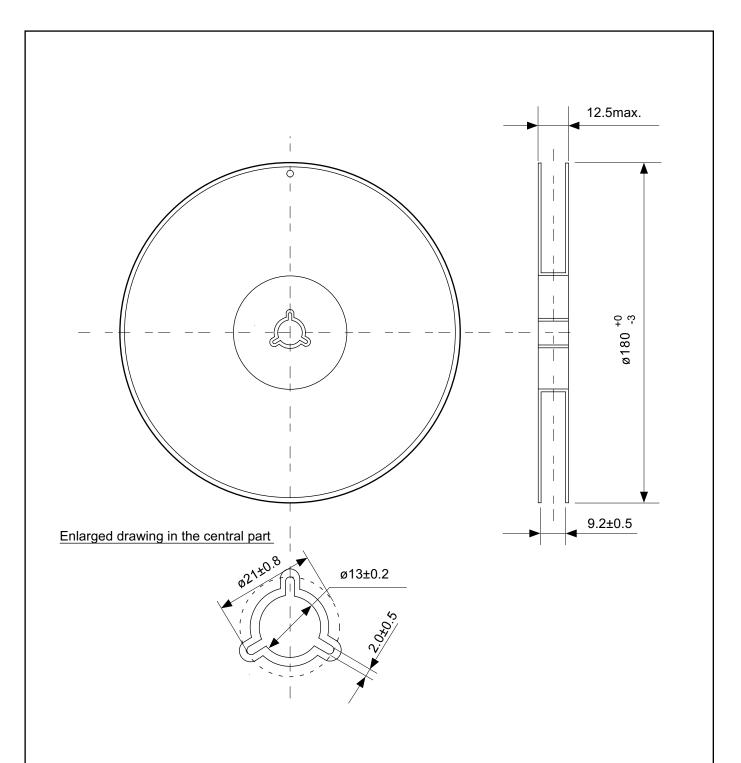
2. 1 Nch open-drain output product

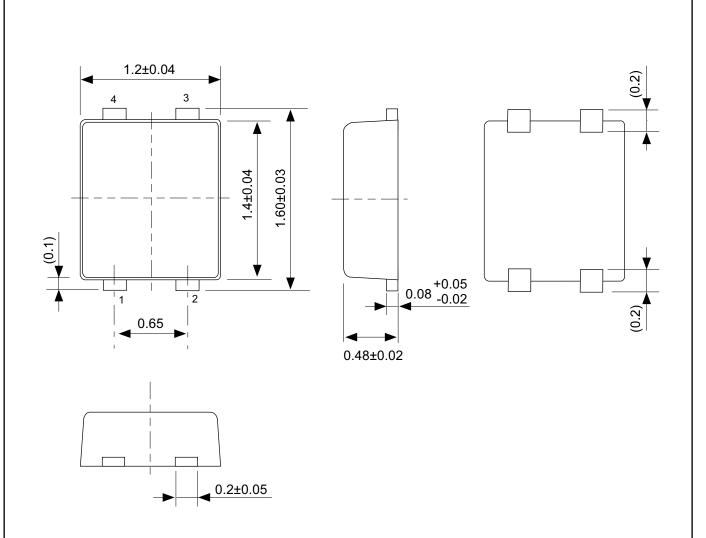
Product Name	Product Code		
Product Name	(1)	(2)	(3)
S-5716ANDL0-I4T1U	Х	3	С
S-5716ANDL1-I4T1U	Х	2	D
S-5716ANDL2-I4T1U	Х	3	E
S-5716ANSL1-I4T1U	Х	2	E
S-5716ANSL2-I4T1U	Х	3	G


2. 2 CMOS output product

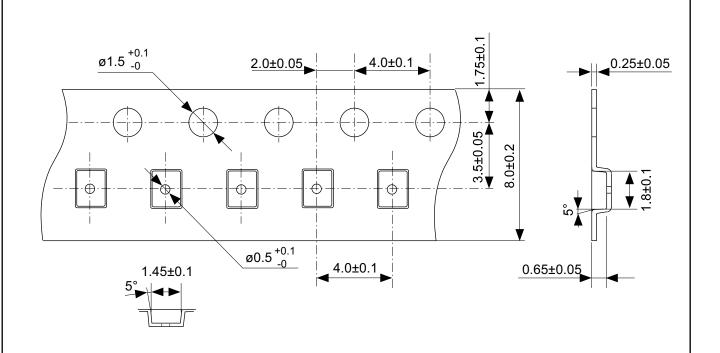

Product Name	Product Code		
Product Name	(1)	(2)	(3)
S-5716ACDL0-I4T1U	Х	3	В
S-5716ACDL1-I4T1U	Χ	2	F
S-5716ACDL2-I4T1U	Χ	3	D
S-5716ACDH0-I4T1U	Χ	3	Н
S-5716ACDH1-I4T1U	Χ	3	Α
S-5716ACDH2-I4T1U	Χ	3	I
S-5716ACSL0-I4T1U	X	3	L
S-5716ACSL1-I4T1U	Χ	2	G
S-5716ACSL2-I4T1U	Х	3	F
S-5716ACSH0-I4T1U	Х	3	N

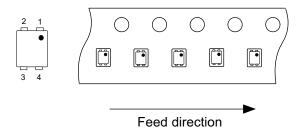
No. MP003-C-P-SD-1.0


TITLE	SOT233-C-PKG Dimensions	
No.	MP003-C-P-SD-1.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

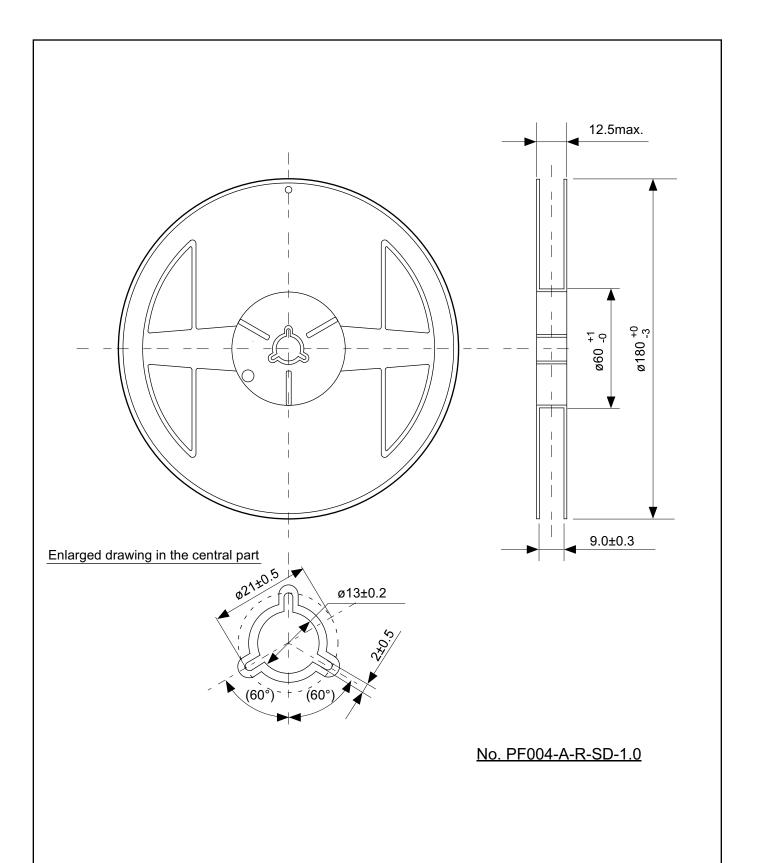

No. MP003-C-C-SD-2.0

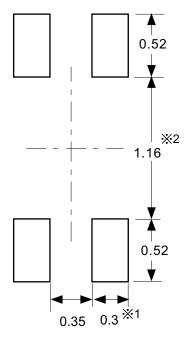
TITLE	SOT233-C-Carrier Tape	
No.	MP003-C-C-SD-2.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		


No. MP003-Z-R-SD-1.0


TITLE	SOT233-C-Reel		
No.	MP003-Z-R-SD-1.0		
SCALE		QTY.	3,000
UNIT	mm		
Seiko Instruments Inc.			

No. PF004-A-P-SD-4.0


TITLE	SNT-4A-A-PKG Dimensions	
No.	PF004-A-P-SD-4.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		



No. PF004-A-C-SD-1.0

TITLE	SNT-4A-A-Carrier Tape	
No.	PF004-A-C-SD-1.0	
SCALE		
UNIT	mm	
Seiko Instruments Inc.		

TITLE	SNT-4A-A-Reel		
No.	PF004-A-R-SD-1.0		
SCALE		QTY.	5,000
UNIT	mm		
Seiko Instruments Inc.			

- ※1. ランドパターンの幅に注意してください (0.25 mm min. / 0.30 mm typ.)。 ※2. パッケージ中央にランドパターンを広げないでください (1.10 mm ~ 1.20 mm)。
- 注意 1. パッケージのモールド樹脂下にシルク印刷やハンダ印刷などしないでください。
 - 2. パッケージ下の配線上のソルダーレジストなどの厚みをランドパターン表面から0.03 mm 以下にしてください。 マスク開ロサイズと開口位置はランドパターンと合わせてください。 詳細は "SNTパッケージ活用の手引き"を参照してください。
- ※1. Pay attention to the land pattern width (0.25 mm min. / 0.30 mm typ.).
- X2. Do not widen the land pattern to the center of the package (1.10 mm to 1.20 mm).
- Caution 1. Do not do silkscreen printing and solder printing under the mold resin of the package.
 - 2. The thickness of the solder resist on the wire pattern under the package should be 0.03 mm or less from the land pattern surface.
 - 3. Match the mask aperture size and aperture position with the land pattern.
 - 4. Refer to "SNT Package User's Guide" for details.
- ※1. 请注意焊盘模式的宽度 (0.25 mm min. / 0.30 mm typ.)。
- ※2. 请请勿向封装中间扩展焊盘模式 (1.10 mm~1.20 mm)。
- 注意 1. 请勿在树脂型封装的下面印刷丝网、焊锡。
 - 2. 在封装下、布线上的阻焊膜厚度 (从焊盘模式表面起) 请控制在0.03 mm以下。
 - 3. 掩膜的开口尺寸和开口位置请与焊盘模式对齐。
 - 4. 详细内容请参阅 "SNT封装的应用指南"。

No. PF004-A-L-SD-4.0

TITLE	SNT-4A-A-Land Recommendation	
No.	PF004-A-L-SD-4.0	
SCALE		
UNIT	mm	
<u> </u>	<u> </u>	
l Seiko Instruments Inc.		

SII Seiko Instruments Inc. www.sii-ic.com

- The information described herein is subject to change without notice.
- Seiko Instruments Inc. is not responsible for any problems caused by circuits or diagrams described herein
 whose related industrial properties, patents, or other rights belong to third parties. The application circuit
 examples explain typical applications of the products, and do not guarantee the success of any specific
 mass-production design.
- When the products described herein are regulated products subject to the Wassenaar Arrangement or other agreements, they may not be exported without authorization from the appropriate governmental authority.
- Use of the information described herein for other purposes and/or reproduction or copying without the express permission of Seiko Instruments Inc. is strictly prohibited.
- The products described herein cannot be used as part of any device or equipment affecting the human body, such as exercise equipment, medical equipment, security systems, gas equipment, vehicle equipment, in-vehicle equipment, aviation equipment, aerospace equipment, and nuclear-related equipment, without prior written permission of Seiko Instruments Inc.
- The products described herein are not designed to be radiation-proof.
- Although Seiko Instruments Inc. exerts the greatest possible effort to ensure high quality and reliability, the
 failure or malfunction of semiconductor products may occur. The user of these products should therefore
 give thorough consideration to safety design, including redundancy, fire-prevention measures, and
 malfunction prevention, to prevent any accidents, fires, or community damage that may ensue.