

RB521S30200 mA low V_F MEGA Schottky barrier rectifierRev. 01 - 6 October 2009

Product data sheet

1. Product profile

1.1 General description

Planar Maximum Efficiency General Application (MEGA) Schottky barrier rectifier with an integrated guard ring for stress protection, encapsulated in a SOD523 (SC-79) ultra small and flat lead Surface-Mounted Device (SMD) plastic package.

1.2 Features

- Average forward current: I_{F(AV)} ≤ 0.2 A
- Reverse voltage: V_R ≤ 30 V
- Low reverse current: $I_R \le 30 \ \mu A$
- AEC-Q101 qualified
- Ultra small and flat lead SMD plastic package

1.3 Applications

- Low current rectification
- High efficiency DC-to-DC conversion
- Switch Mode Power Supply (SMPS)
- Reverse polarity protection
- Low power consumption applications

1.4 Quick reference data

Table 1.Quick reference data

$T_j = 25 \circ C$ unless otherwise specified.

$I_{F(AV)} \\ Average forward current \\ Average forward current \\ \frac{\delta = 0.5;}{f = 20 \text{ kHz}} \\ \frac{T_{amb} \le 120 \text{ °C} [1]}{T_{sp} \le 140 \text{ °C}} \\ \frac{1}{T_{sp} \ge 140 $	1) = 20 00						
$ \begin{array}{c c} \delta = 0.5; \\ f = 20 \text{ kHz} \\ \hline T_{amb} \leq 120 \ ^\circ C & \fbox{11} \ - & - & 0.2 \ A \\ \hline T_{sp} \leq 140 \ ^\circ C & - & - & 0.2 \ A \\ \hline R & reverse current & V_R = 10 \ V & - & 2.5 \ 30 \ \mu A \\ \hline V_R & reverse voltage & - & - & 30 \ V \end{array} $	Symbol	Parameter	Conditions	Min	Тур	Max	Unit
$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	I _{F(AV)}	average forward current	δ = 0.5;				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			$T_{amb} \le 120 \ ^{\circ}C$	<u>[1]</u>	-	0.2	А
V_R reverse voltage 30 V			$T_{sp} \le 140 \ ^{\circ}C$	-	-	0.2	А
	I _R	reverse current	V _R = 10 V	-	2.5	30	μA
	V _R	reverse voltage		-	-	30	V
V_F forward voltage $I_F = 0.2 \text{ A}$ \square - 420 500 m ³	V _F	forward voltage	I _F = 0.2 A	[2] _	420	500	mV

[1] Device mounted on an FR4 Printed-Circuit Board (PCB), single-sided copper, mounting pad for cathode 1 cm².

200 mA low V_F MEGA Schottky barrier rectifier

2. Pinning information

Table 2.	Pinning		
Pin	Description	Simplified outlin	e Graphic symbol
1	cathode	[1]	84
2	anode	1 2	1 🕂 2
			sym001

[1] The marking bar indicates the cathode.

3. Ordering information

Table 3. Ordering	g information		
Type number	Package		
	Name	Description	Version
RB521S30	SC-79	plastic surface-mounted package; 2 leads	SOD523

4. Marking

Table 4. Marking codes	
Type number	Marking code
RB521S30	ZB

5. Limiting values

Table 5.Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions			
-,		Conditions	Min	Max	Unit
V _R	reverse voltage	$T_j = 25 \ ^{\circ}C$	-	30	V
I _{F(AV)}	average forward current	square wave; $\delta = 0.5$; f = 20 kHz			
		$T_{amb} \le 120 \ ^{\circ}C$	<u>[1]</u> _	0.2	А
		$T_{sp} \le 140 \ ^{\circ}C$	-	0.2	А
I _{FSM}	non-repetitive peak forward current	t _p = 8.3 ms half sine wave; JEDEC method	[2] _	1	A
P _{tot}	total power dissipation	$T_{amb} \le 25 \ ^{\circ}C$	[3][4]	275	mW
			[3][1]	420	mW
			[3][5]	500	mW

200 mA low V_F MEGA Schottky barrier rectifier

Table 5. Limiting values ...continued

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
Т _ј	junction temperature		-	150	°C
T _{amb}	ambient temperature		-55	+150	°C
T _{stg}	storage temperature		-65	+150	°C

[1] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm².

[2] $T_i = 25 \,^{\circ}C$ prior to surge.

[3] Reflow soldering is the only recommended soldering method.

[4] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

[5] Device mounted on a ceramic PCB, Al₂O₃, standard footprint.

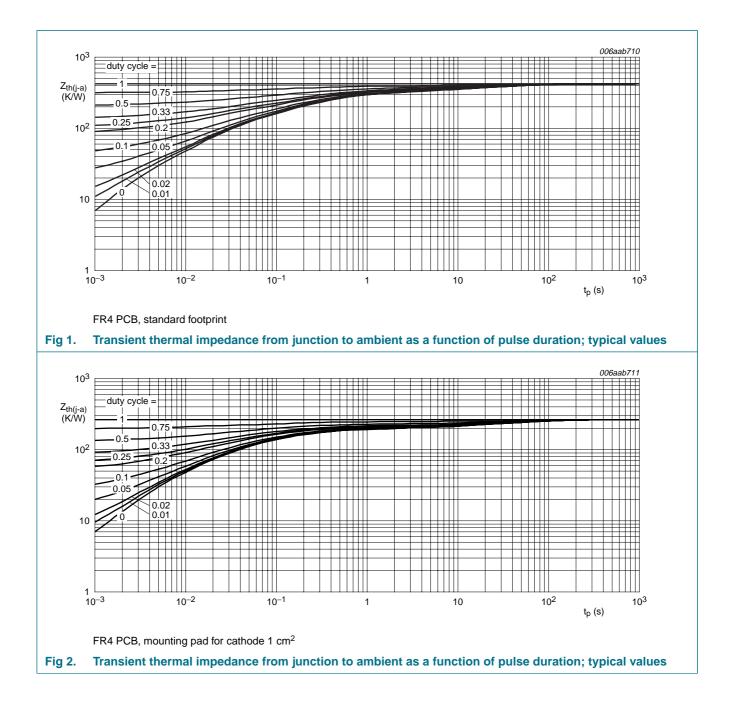
6. Thermal characteristics

Table 6.	Thermal characteristics					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
ui(ju)	thermal resistance from	in free air	<u>[1][2]</u>			
	junction to ambient		<u>[3]</u> _	-	455	K/W
			<u>[4]</u> _	-	300	K/W
			[5] _	-	250	K/W
R _{th(j-sp)}	thermal resistance from junction to solder point		<u>[6]</u> _	-	90	K/W

[1] For Schottky barrier diodes thermal runaway has to be considered, as in some applications the reverse power losses P_R are a significant part of the total power losses.

[2] Reflow soldering is the only recommended soldering method.

[3] Device mounted on an FR4 PCB, single-sided copper, tin-plated and standard footprint.

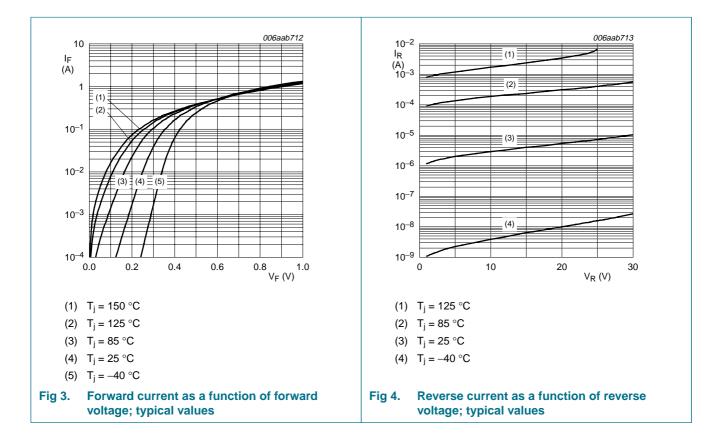

[4] Device mounted on an FR4 PCB, single-sided copper, tin-plated, mounting pad for cathode 1 cm².

[5] Device mounted on a ceramic PCB, AI_2O_3 , standard footprint.

[6] Soldering point of cathode tab.

RB521S30 1

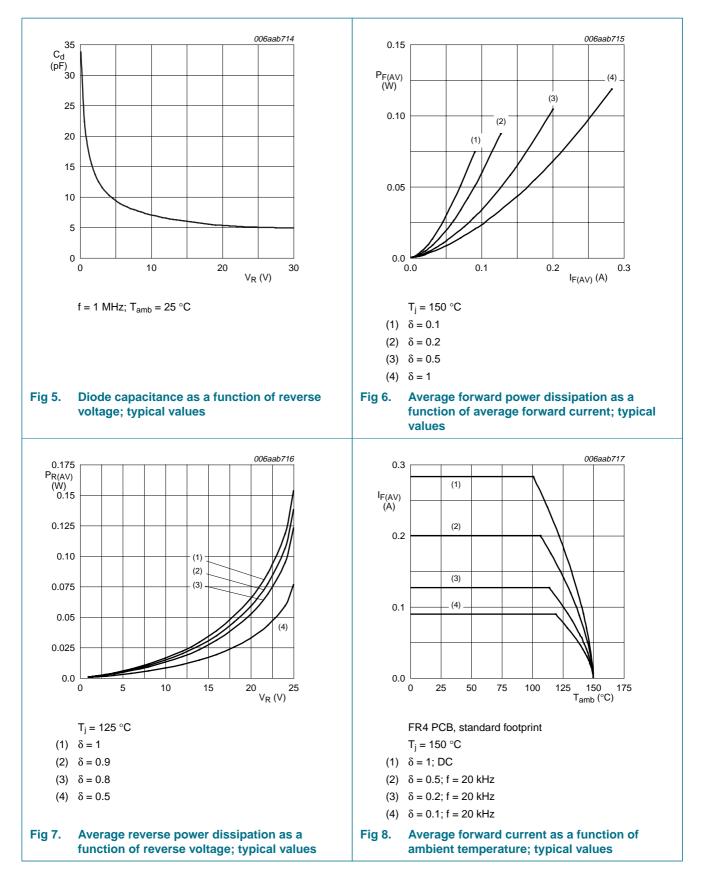
200 mA low V_F MEGA Schottky barrier rectifier



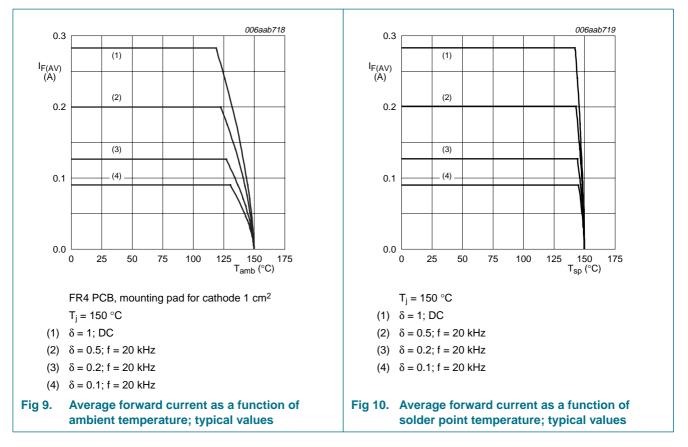
RB521S30 1

200 mA low V_F MEGA Schottky barrier rectifier

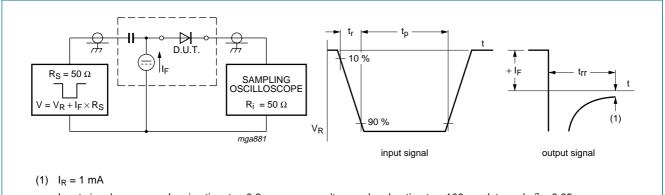
7. Characteristics


	Characteristics Inless otherwise specifie	ed.				
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _F forward voltage			<u>[1]</u>			
		I _F = 0.1 mA	-	130	190	mV
		I _F = 1 mA	-	190	250	mV
		I _F = 10 mA	-	255	300	mV
		I _F = 100 mA	-	355	410	mV
		I _F = 200 mA	-	420	500	mV
I _R	reverse current	V _R = 10 V	-	2.5	30	μA
C _d	diode capacitance	$f = 1 \text{ MHz}; V_R = 1 \text{ V}$	-	20	25	pF

NXP Semiconductors

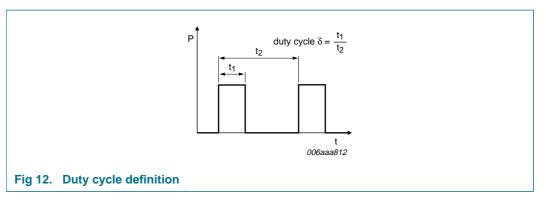

RB521S30

200 mA low V_F MEGA Schottky barrier rectifier



RB521S30_1

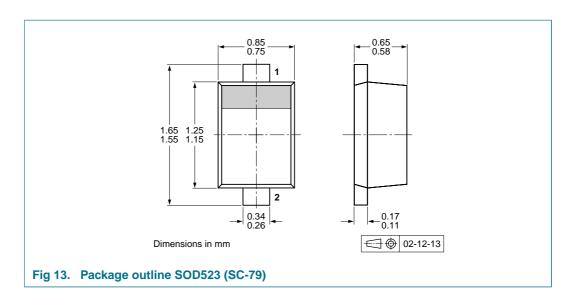
200 mA low V_F MEGA Schottky barrier rectifier


8. Test information

Input signal: reverse pulse rise time $t_r = 0.6$ ns; reverse voltage pulse duration $t_p = 100$ ns; duty cycle $\delta = 0.05$ Oscilloscope: rise time $t_r = 0.35$ ns

Fig 11. Reverse recovery time test circuit and waveforms

200 mA low V_F MEGA Schottky barrier rectifier


The current ratings for the typical waveforms as shown in Figure 8, 9 and 10 are calculated according to the equations: $I_{F(AV)} = I_M \times \delta$ with I_M defined as peak current,

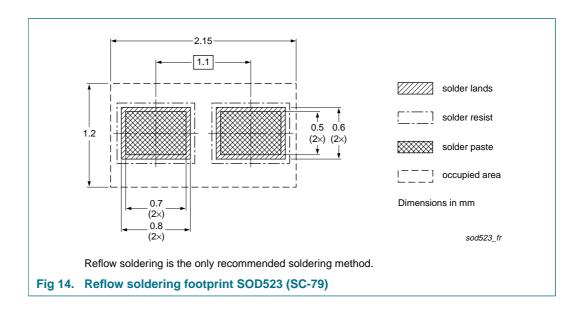
 $I_{RMS} = I_{F(AV)}$ at DC, and $I_{RMS} = I_M \times \sqrt{\delta}$ with I_{RMS} defined as RMS current.

8.1 Quality information

This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard *Q101* - *Stress test qualification for discrete semiconductors*, and is suitable for use in automotive applications.

9. Package outline

RB521S30 1


200 mA low V_F MEGA Schottky barrier rectifier

10. Packing information

	king meth	ods last three digits of the 12NC ordering co	de.[<u>1]</u>		
Type number	Package	Description	Packin	ig quanti	ity
			3000	8000	10000
RB521S30	SOD523	2 mm pitch, 8 mm tape and reel	-	-315	-
		4 mm pitch, 8 mm tape and reel	-115	-	-135

[1] For further information and the availability of packing methods, see Section 14.

11. Soldering

RB521S30_1

200 mA low V_F MEGA Schottky barrier rectifier

12. Revision history

Table 9. R	evision history				
Document ID) Rel	lease date	Data sheet status	Change notice	Supersedes
RB521S30_1	200	091006 I	Product data sheet	-	-

200 mA low V_F MEGA Schottky barrier rectifier

13. Legal information

13.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

13.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

RB521S30_1 Product data sheet

200 mA low V_F MEGA Schottky barrier rectifier

15. Contents

1	Product profile 1
1.1	General description
1.2	Features
1.3	Applications 1
1.4	Quick reference data
2	Pinning information 2
3	Ordering information 2
4	Marking 2
5	Limiting values 2
6	Thermal characteristics 3
7	Characteristics 5
8	Test information 7
8.1	Quality information 8
9	Package outline 8
10	Packing information9
11	Soldering 9
12	Revision history 10
13	Legal information 11
13.1	Data sheet status 11
13.2	Definitions 11
13.3	Disclaimers
13.4	Trademarks 11
14	Contact information 11
15	Contents 12

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2009.

All rights reserved.

founded by

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 6 October 2009 Document identifier: RB521S30_1