
– 1 –

Introduction
The software included with the MDEV-USB-QS Master Development

Kit is a quick and easy way to test the features of the QS Series USB

module. The Manual for the kit explains the board and hardware, and

this document will explain how to use the software and explains some of

the source code. Any questions not answered by this document can be

referred to Linx.

The Program Interface
The development board connects the QS module to one of two sections,

so when the software is first started, a screen will be displayed asking

the user to choose which section of the board will be used. The USB to

RS232 section will activate the USB module and the serial port on the

PC. This section will send data through the USB bus and receive it back

through the serial port, and vice versa.

The USB to PIC section demonstrates how to interface the QS module

with a popular microcontroller, the PIC16F88 from Microchip. This section

will demonstrate how to have the PC instruct the PIC to turn on some

LEDs and have the PIC tell the PC to light an indicator on the screen

when a button on the board is pressed and move a slider when a poten-

tiometer is turned. The user should decide which section will be used and

click the appropriate button.

The PIC Control Screen
Selecting USB TO PIC will bring up the PIC Control screen as shown in

Figure 2.

This screen is divided into several sections. At the top, the CURRENT

DEVICE box will display the description and serial number of the device

to which the computer is currently connected. The CONNECTED USB

DEVICES box below that will list the description and serial number of all

of the QS modules that are currently connected to the bus. Clicking on

one of the listed devices and pressing the STATUS button will change the

current device to the one that was highlighted in the box. A green light

above the STATUS button indicates that the device is connected and

QS Series Master Development System

Software Documentation

Revised 11/28/12

Figure 1: The Choose Application Screen

– 2 –

communicating normally. A red light indicates that an error has occurred

or that no device is connected.

The section labeled A/D VOLTAGE ADJUST has a light bar and an

indicator that will change based on the position of the VOLTAGE AD-

JUST potentiometer on the evaluation board. The PIC will take a voltage

reading from its internal Analog-to-Digital Converter (ADC), will convert

that value into a voltage, and will send that voltage to the computer. The

computer will display the voltage in the indicator box and will activate the

light bar based on the percentage of full voltage.

The section labeled MODEM LINES controls the QS module’s UART

handshaking lines. The outputs, RTS and DTR can be activated by

pressing the buttons on the screen, which will turn on LEDs on the

evaluation board. Pressing the Modem Line buttons on the evaluation

board will cause the appropriate input indicator on the screen to turn on.

The buttons labeled LED 1, LED 2 and LED 3 will send a signal to the

PIC that will turn on and off three LEDs on the evaluation board. The indi-

cators above the buttons will also light up to match the state of the LEDs.

Pressing the button on the evaluation board will cause the PIC to send a

signal to the PC that will cause the indicator labeled USB COM to turn on

and off.

Figure 2: The PIC Control Screen

MDEV-USB-QS Software Documentation

– 3 –

The RS232 Control Screen
Selecting USB TO RS232 from the CHOOSE APPLICATION screen will

bring up the RS232 CONTROL screen as shown in Figure 3.

Selecting this option causes the SEND AND RECEIVE VIA RS232

section to become available. Pressing the USB COM button will send a

signal out of the computer’s serial port to the evaluation board, and back

into the computer through the QS module. This signal will cause the USB

COM indicator on the screen to turn on. Likewise, pressing the LED1,

LED2 and LED3 buttons in the SEND AND RECEIVE VIA USB section

will cause the appropriate lights in the SEND AND RECEIVE VIA RS232

section to turn on.

The Menus
The CONTROL screen has four menu items at the top of the screen. The

first menu, FILE, has only the EXIT option. This selection will close the

windows and exit the program.

The VIEW menu has three options: USB PROPERTIES, RS232 PROP-

ERTIES and CONTACT US. The USB PROPERTIES screen contains the

communications settings for the USB port, as seen in Figure 4.

Figure 3: The RS232 Control Screen

MDEV-USB-QS Software Documentation

– 4 –

The DEVICE DESCRIPTION box will show the description of the cur-

rent device. The BAUD RATE, DATA BITS and PARITY selection boxes

allow the user to set the communication parameters. When in PIC mode,

these options will be disabled and set for proper communication with the

processor. The ERROR DESCRIPTION and LOG REPORT will list any

communication errors that may occur. Click OK to apply any changes or

CANCEL to exit out and return to the CONTROL screen with no changes.

The RS232 PROPERTIES screen contains the communications settings

for the serial port, as seen in Figure 5.

The PORT NUMBER box will list all of the available COM ports on the

PC. The software will default to COM1, so select the port that will be con-

nected to the development board. The BAUD RATE, DATA BITS, STOP

BITS, and PARITY selection boxes allow the user to set the communica-

tion parameters. Click OK to apply any changes or CANCEL to exit out

and return to the CONTROL screen with no changes.

Figure 4: The USB Properties Screen

Figure 5: The RS232 Properties Screen

MDEV-USB-QS Software Documentation

– 5 –

The CONTACT US screen has all of the contact information for Linx

Technologies. Click on one of the web links to open the Linx Technologies

web site in the default web browser and the email link to send an email

in Microsoft Outlook. Click OK to exit out and return to the CONTROL

screen.

The WINDOW menu item has two options: PIC CONTROL and RS232

CONTROL. These options will toggle the CONTROL screen between the

PIC CONTROL screen and the RS232 CONTROL screen.

The HELP menu item has three options: ABOUT, HELP FILE, and

CONTACT US. The ABOUT screen displays information about the

software, as shown in Figure 7.

Click on one of the web links to open the Linx Technologies web site in

the default web browser and the email link to send an email in Microsoft

Outlook. Click OK to exit out and return to the CONTROL screen. Click

on SYSTEM INFO to open the Windows System folder.

The HELP FILE option will display this document in either .pdf or .htm

format. The CONTACT US option will display the CONTACT US screen

described above.

Figure 6: The Contact Us Screen

Figure 7: The About Screen

MDEV-USB-QS Software Documentation

– 6 –

A QS Module System Example
The rest of the manual will give some of the source code used in the

development software. The application software was written in Microsoft

Visual Basic 6.0 and the Programmer’s Guide has examples of these

functions written in C. Error handling and many of the references to

objects on the forms are not shown to conserve space and reduce the

possibility of confusion, but comments have been added where the user

should put their own code. The Programmer’s Guide should be used in

addition to this document to aid in software development.

The functions listed in this software are contained in the FTD2XX.dll file,

so these functions must be declared before they can be used. All of these

functions are described in the Programmer’s Guide in detail. The file “QS

VB Header File.txt” on the CD with the Master Development Kit Software

contains all of the necessary function and constant declarations used by

the software. This text file should be copied into a module in the Visual

Basic project. The header file is also included in the Programmer’s

Guide and can be downloaded from the Linx website as a text file.

The first step in this system example is to determine if and how many

devices are connected to the bus. This is done in C by using the FT_List-

Devices function, though a difference in the way the Visual Basic

variables are passed to the .dll has resulted in the creation of another

function, FT_GetNumDevices. The code is as follows:

LIST_BY_NUMBER_ONLY and OK are declared in the header file. If

this function is successful, then the number of QS devices connected

to the USB bus is stored in the variable lngNumDevices. If there is a

problem, then the error code should be viewed so that the cause can be

determined and corrected. This function can also be called periodically to

check the bus for new devices or to see if old ones have been

disconnected.

If devices are found, then the FT_ListDevices function can be used to

get the device description and serial number.

Note: This code is provided as an example to aid our customers

in their development and may or may not be appropriate for an

individual application. This code is provided “As Is” and Linx

Technologies makes no warrantees and assumes no liability for the

use of this code.

Dim lngStatus As Long

Dim lngNumDevices As Long’

‘ Get the number of devices attached to the bus

 lngStatus = FT_GetNumDevices (lngNumDevices, vbNullString, LIST_BY_NUMBER_ONLY)

 If lngStatus = OK Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

MDEV-USB-QS Software Documentation

– 7 –

Index is the number in which the bus located the device, starting with

zero. If multiple devices are located on the bus then the above code can

be used in a For loop to get the information for each device in turn,

allowing the application software to decide which device to interface with.

The For loop would be indexed by the number of devices returned by

FT_GetNumDevices.

At this point, there are three ways of opening a communication channel

with a device: by the index number, the description, or the serial num-

ber. The index number does not allow the application to open a specific

named device, and if there are two devices with the same description on

the bus then only the one with the lowest index number will be opened.

The serial number is unique to each device and can be used to ensure

that a specific device is opened. This example uses the serial number so

refer to the Programmer’s Guide for examples of the other two methods.

Dim lngStatus As Long

Dim Index As Integer

Dim strDescription as String

Dim strSerialNumber as String

‘ Get the device description

 lngStatus = FT_ListDevices(Index, strDescription, LIST_BY_INDEX Or OPEN_BY_DESCRIPTION)

 If lngStatus = OK Then

 ‘The function was successful and the device description is in strDescription

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

‘ Get the device serial number

 lngStatus = FT_ListDevices(Index, strSerialNumber, LIST_BY_INDEX Or OPEN_BY_SERIAL_NUMBER)

 If lngStatus = OK Then

 ‘The function was successful and the device serial number is in strSerialNumber

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

Dim arrDescription() As String * 256

Dim arrSerialNumber() As String * 256

Dim lngStatus As Long

Dim Index As Integer

Dim strDescription as String

Dim strSerialNumber as String

Dim lngNumDevices As Long

‘ Get the number of devices attached to the bus

 lngStatus = FT_GetNumDevices(lngNumDevices, vbNullString, LIST_BY_NUMBER_ONLY)

 If lngStatus = OK Then

 ReDim arrDescription(lngNumDevices) As String * 256 ‘resize the arrays to the number of devices connected

 ReDim arrSerialNumber(lngNumDevices) As String * 256

 End If

 For Index = 0 To (lngNumDevices - 1) Step 1

‘ Get the device description

 lngStatus = FT_ListDevices(Index, strDescription, LIST_BY_INDEX Or OPEN_BY_DESCRIPTION)

 If lngStatus = OK Then

 arrDescription(Index) = strDescription

 End If

‘ Get the device serial number

 lngStatus = FT_ListDevices(Index, strSerialNumber, LIST_BY_INDEX Or OPEN_BY_SERIAL_NUMBER)

 If lngStatus = OK Then

 arrNumber(Index) = strSerialNumber

 End If

Next Index

MDEV-USB-QS Software Documentation

– 8 –

This will open the device with the serial number that is contained in

strSerialNumber and return a unique number in lngHandle that will

be used by the other functions to communicate with the device. Once

opened, the communications parameters should be set. The following

function demonstrates the code to do this.

Now that the device has been opened and the communication parame-

ters have been set, the application can read and write data to the device.

The code below will write the contents of the string strWriteBuffer to the

device.

MDEV-USB-QS Software Documentation

Dim lngStatus As Long

Dim strSerialNumber as String

Dim lngHandle As Long

‘ Open the device using the serial number

 lngStatus = FT_OpenEx(strSerialNumber, OPEN_BY_SERIAL_NUMBER, lngHandle)

 If lngStatus = OK Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

Dim lngStatus As Long

Dim lngHandle As Long

Dim sngUSB_Baud As Single

Dim intUSB_DataBits As Integer

Dim intUSB_Stops As Integer

Dim intUSB_Parity As Integer

sngUSB_Baud = 9600 ‘9600bps baud

intUSB_Stops = 0 ‘Stop Bits: 1 bit = 0, 1.5 bits = 1, 2 bits = 2

intUSB_DataBits = 8 ‘Data Bits: 7 or 8

intUSB_Parity = 0 ‘Parity: none = 0, odd = 1, even = 2, mark = 3, space = 4

Function SetUpUSB()

 ‘ Set baud rate

 lngStatus = FT_SetBaudRate(lngHandle, sngUSB_Baud)

 If lngStatus = OK Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

 ‘ Set data bits, stop bits, and parity

 lngStatus = FT_SetDataCharacteristics(lngHandle, intUSB_DataBits, intUSB_Stops, intUSB_Parity)

 If lngStatus = OK Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

	 ‘	no	low	control
 lngStatus = FT_SetFlowControl(lngHandle, FLOW_NONE, 0, 0)

 If lngStatus = OK Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

 ‘ 5 second read timeout

 lngStatus = FT_SetTimeouts(lngHandle, 5000, 0)

 If lngStatus = OK Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

End Function

– 9 –
MDEV-USB-QS Software Documentation

Dim lngStatus As Long

Dim lngHandle As Long

Dim strWriteBuffer As String

Dim lngTXAmt As Long

Dim lngBytesWritten As Long

‘ Write the data

 lngStatus = FT_Write(lngHandle, strWriteBuffer, lngTXAmt, lngBytesWritten)

 If lngStatus = OK Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

The following code will read the data from the device and store it in

strReadBuffer.

Dim lngStatus As Long

Dim lngHandle As Long

Dim strReadBuffer As String * 256

Dim lngRXBytes As Long

Dim lngBytesRead As Long

‘ Read the data

 lngStatus = FT_Read(lngHandle, strReadBuffer, lngRXBytes, lngBytesRead)

 If (lngStatus = OK) Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

This will only read the data as soon as it is called, but will not be called

automatically when there is data to be read. This means that the device

must be periodically checked for data. The following code can be used

with a timer to periodically check the receive buffer and the state of the

modem control lines. In this example, the timer is set to check the device

every 200mS, though a specific application

may need more or less time.

Dim lngHandle As Long

Dim lngRXBytes As Long

Dim lngTXBytes As Long

Dim lngEvents As Long

‘ Set the timer to check the USB receive buffer

 tmrCheckRx.Interval = 200

Private Sub tmrCheckRx_Timer()

‘ Timer to periodically check the device for data

 If FT_GetStatus(lngHandle, lngRXBytes, lngTXBytes, lngEvents) = OK Then

 If lngRXBytes > 0 Then

 ‘The device has data, call the FT_Read function

 End If

 End If

‘ Get the status of the modem lines

 lngStatus = FT_GetModemStatus(lngHandle, lngModemStatus)

 If (lngModemStatus And MODEM_STATUS_CTS) = MODEM_STATUS_CTS Then

 ‘CTS is high

 Else

 ‘CTS is low

 End If

 If (lngModemStatus And MODEM_STATUS_DSR) = MODEM_STATUS_DSR Then

 ‘DSR is high

 Else

 ‘DSR is low

 End If

 If (lngModemStatus And MODEM_STATUS_DCD) = MODEM_STATUS_DCD Then

 ‘DCD is high

 Else

 ‘DCD is low

 End If

 If (lngModemStatus And MODEM_STATUS_RI) = MODEM_STATUS_RI Then

 ‘RI is high

 Else

 ‘RI is low

 End If

End Sub

– 10 –

When the communication session has ended, close the channel to the

device using the following code.

The following function can be used to display the type of error should one

occur.

Should one of the functions fail, lngStatus can be passed to this func-

tion and strUSB_Error can be displayed on the form to show which error

occurred. For example, suppose a text box named txtStatus is placed on

the form, then the code to open the device could be modified to display

the results of the function call in the text box.

The other functions can be modified in a similar manner to suit the needs

of the application. Please refer to the Programmer’s Guide for a complete

list of functions and more sample code.

Dim lngHandle As Long

‘ Close the current device

 lngStatus = FT_Close(lngHandle)

 If (lngStatus = OK) Then

 ‘The function was successful

 Else

 ‘The function failed and the error code should be viewed to determine corrective action

 End If

Public strUSB_Error As String

Public Function ErrorCode(lngErrorNum As Long)

 Select Case lngErrorNum

 Case 0

 strUSB_Error = “No Error”

 Case 1

 strUSB_Error = “Invalid Handle”

 Case 2

 strUSB_Error = “Device Not Found”

 Case 3

 strUSB_Error = “Device Not Opened”

 Case 4

 strUSB_Error = “IO Error”

 Case 5

	 	 	 strUSB_Error	=	“Insuficient	Resources”
 Case 6

 strUSB_Error = “Invalid Parameter”

 Case 7

 strUSB_Error = “Invalid Baud Rate”

 Case 8

 strUSB_Error = “Device Not Opened For Erase”

 Case 9

 strUSB_Error = “Device Not Opened For Write”

 Case 10

 strUSB_Error = “Failed To Write Device”

 Case 11

 strUSB_Error = “EEPROM Read Failed”

 Case 12

 strUSB_Error = “EEPROM Write Failed”

 Case 13

 strUSB_Error = “EEPROM Erase Failed”

 Case 14

 strUSB_Error = “EEPROM Not Present”

 Case 15

 strUSB_Error = “EEPROM Not Programmed”

 Case 16

 strUSB_Error = “Invalid Args”

 Case 17

 strUSB_Error = “Other Error”

 End Select

End Function

‘ Open the device using the serial number

 lngStatus = FT_OpenEx(strSerialNumber, OPEN_BY_SERIAL_NUMBER, lngHandle)

 If lngStatus = OK Then

 txtStatus.Text = “No Error”

 Else

 Call ErrorCode(lngStatus)

 txtStatus.Text = “Open Failed: “ & strUSB_Error

 End If

MDEV-USB-QS Software Documentation

– 11 –

The Microprocessor Code
The processor used on the evaluation board is the Microchip PIC16F88.

The source code for this chip is written in C and compiled using the CCS

PIC C Compiler (www.ccsinfo.com). Interfacing the microprocessor

to the QS module is very straightforward thanks to the UARTs built into

both devices. The processor is initialized to use the default RX and TX

lines as shown in the following code.

When a specific event occurs, PIC processors can jump out of the main

program into a program written for that event. These events are called

interrupts and must be defined in the code. The types of interrupts that

can be created depends on the processor. The first interrupt used by the

processor is for received data and is coded below.

When the processor receives a character, the interrupt is generated and

the code above is called. The getc() function gets the data from the

UART and the next line passes it to function Receive. This function would

then take an action based on the received data, such as taking a line

high to activate a LED. The second interrupt is for a timer that is used to

generate a value from the ADC to move the A/D Voltage Adjust slider on

the computer screen and also demonstrates how to send data to the QS

module.

#include <16F88.h>

#device ADC=8

#include <stdio.h>

#fuses NOWDT,INTRC_IO,NOMCLR

#use delay(clock=4000000)

#use rs232(baud=9600,xmit=PIN_B5,rcv=PIN_B2)

char RxData; // Holds the received data character

//Interrupts when received data available

#int_rda

 void rda_isr(void)

 {

 RxData = getc(); //Get the character

 Receive(RxData); //Call the Receive function

 }

int CurrentCount; // Holds the current timer count

loat	OldValue;		 	 	 	 //	Holds	the	last	voltage	value	sent

// Initialize the variables

CurrentCount = 10;

OldValue	=	0;

//	Interrupts	when	the	clock	overlows
#INT_RTCC

 void clock_isr(void)

 {

 if(--CurrentCount==0) // Subtract 1 from count and if it is 0

 {

	 	 	 GetADC(OldValue);		 //	Call	the	GetADC	function
 CurrentCount = 10; // Reset the counter

 }

 }

MDEV-USB-QS Software Documentation

– 12 –

When the internal clock reaches its maximum value then this code will be

called. With a 4MHz clock this occurs about every 13mS and the coun-

ter will wait for the overrun to happen ten times before reading the ADC

value, meaning the GetADC function is called about every 130mS. This

function is shown below.

The ADC will return a value of 0 for a voltage of 0V and a value of 255 for

a voltage of Vcc, in this case 5V. The ratio of 5/255 will convert the ADC

value into the actual voltage measured on the pin. This value is compared

to the previous reading from the ADC and, if different, output to the QS

module with the printf() statement. This comparison helps to keep the bus

quiet by only sending the value when it has changed rather than sending

the same value repeatedly every 130mS.

The button press is detected by looking for a change on the button line.

The button on the board is momentary so the software is used to latch

the indicator in the application software. When a button press is detected,

the software check what was sent the last time and sends the opposite

command. It then waits for the line to go low to prevent the light from

constantly switching while the button is held down. Finally, a 100mS

debounce wait will prevent any noise from the button from causing the

PIC to recognize multiple presses.

int	ADCValue;		 	 	 	 //	Holds	the	value	read	by	the	ADC
loat	Ratio;		 	 	 	 //	Holds	MaxVolt/MaxADC
loat	Voltage;		 	 	 	 //	Holds	the	voltage	measured	by	the	ADC

Ratio = 0.019608; // = 5/255

void	GetADC(loat	LastValue)
 {

	 ADCValue	=	Read_ADC();		 	 //	Get	the	ADC	value
	 Voltage	=	(ADCValue	*	Ratio);		 //	Multiply	by	ratio	to	convert	to	voltage
	 if	(Voltage	!=	LastValue)		 	 //	if	it	is	not	equal	to	the	last	value
 {

	 	 printf(“%01.2f”,	Voltage);		 //	Send	the	new	value
	 	 OldValue	=	Voltage;		 //	Save	the	new	value
 }

 }

char Data; // Holds the last character sent by Button 1

Data1 = ‘h’; // Initialize the button to off

void CheckButtons(void)

 {

 if(INPUT(PIN_B6)) //If the button was pressed

 {

 if(Data==’h’) //If the last character sent was h (Button off)

 {

 putc(‘g’); //send g (Button on)

 Data=’g’; //update the last character sent

 }

 else if(Data==’g’) //If the last character sent was g (Button on)

 {

 putc(‘h’); //send h (Button off)

 Data=’h’; //update the last character sent

 }

 while(INPUT(PIN_B6)) //Wait for the line to go low again

 {

 delay_ms(1);

 }

 delay_ms(100); //Debounce wait

 }

 }

MDEV-USB-QS Software Documentation

– 13 –

Copyright © 2012 Linx Technologies

159 Ort Lane, Merlin, OR, US 97532

Phone: +1 541 471 6256

Fax: +1 541 471 6251

www.linxtechnologies.com

void main(void)

 {

 //Setup chip and initialize interrupts

 setup_oscillator(OSC_4MHZ);

 enable_interrupts(global);

 enable_interrupts(int_rda);

 setup_adc_ports(sAN0);

 SETUP_ADC(ADC_CLOCK_INTERNAL);

 set_adc_channel(0);

 set_rtcc(0);

	 setup_counters(RTCC_INTERNAL,	RTCC_DIV_256);
 enable_interrupts(INT_RTCC);

 //Initialize LED outputs to low

 OUTPUT_LOW(PIN_A2);

 OUTPUT_LOW(PIN_A3);

 OUTPUT_LOW(PIN_A4);

 }

The opening of the main function sets the clock speed, enables the ADC

and interrupts, and initializes the outputs.

MDEV-USB-QS Software Documentation

