RTE Series — Analog Timers

Key features:

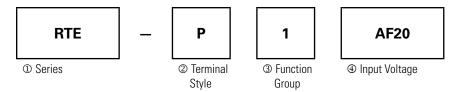
- 20 time ranges and 10 timing functions
- Time delays up to 600 hours
- Space-saving package
- High repeat accuracy of ± 0.2%
- ON and timing OUT LED indicators
- Standard 8- or 11-pin and 11-blade termination
- 2 form C delayed output contacts
- 10A Contact Rating

Cert. No. E9950913332316 (EMC, RTE) Cert. No. BL960813332355 (LVD, RTE)

General Specificat	ions				
Operation System			Solid state CMOS (Circuit	
Operation Type			Multi-Mode		
Time Range			0.1sec to 600 hours		
Pollution Degree			2 (IE60664-1)		
Over voltage category			III (IE60664-1)		
		AF20	100-240V AC(50/60	Hz)	
Rated Operational Volt	age	AD24	24V AC(50/60Hz)/2	4V DC	
		D12	12V DC		
		AF20	85-264V AC(50/60H	łz)	
Voltage Tolerance		AD24	20.4-26.4V AC(50/6	0Hz)/21.6-26.4V DC	
		D12	10.8-13.2V DC		
Input off Voltage			Rated Voltage x10%	6 minimum	
Ambient Operating Ter	mperatur	е	-20 to +65°C (witho	ut freezing)	
Ambient Storage and	Transport	Temperature	-30 to +75°C (witho	ut freezing)	
Relative Humidity			35 to 85%RH (with	out condensation)	
Atmospheric Pressure			80kPa to 110kPa (0	perating), 70kPa to 1	10kPa (Transport)
Reset Time			100msec maximum		
Repeat Error			±0.2%, ±20msec*		
Voltage Error			±0.2%, ±20msec*		
Temperature Error			±0.5%, ±20msec*		
Setting Error			±10% maximum		
Insulation Resistance			100MΩ minimum (5		
			Between power and	d output terminals: 20	000V AC, 1 minute
Dielectric Strength			Between contacts of	of different poles: 200	00V AC, 1 minute
			Between contacts of	of the same pole:1000	OV AC, 1 minute
Vibration Resistance			10 to 55Hz amplitud	de 0.5mm² hours in ea	ach of 3 axes
			Operating extremes	:: 98m/sec ² (10G)	
Shock Resistance			Damage limits: 490	m/sec ² (50G)	
			3 times in each of 3	axes	
Degree of Protection			IP40 (enclosure) (IE	C60529)	
	TYPE		RTE-P1, -B1		RTE-P2, -B2
	AF20	120V AC/60Hz	6.5VA		6.6VA
Power Consumption (Approx.)	AFZU	240V AC/60Hz	11.6VA		11.6VA
(Дриох.)	24V AC 6	60Hz/DC	3.4VA/1.7W		3.5VA/1.7W
	D12		1.6W		1.6W
Mounting Position			Free		
Dimensions		RTE-P1, P2	40Hx 36W x 77.9D	mm	
Dimensions		RTE-B1, B2	40Hx 36W x 74.9D	mm	
Weight (Approx.)			RTE-P1	RTE-P2	RTE-B1, -B2
vveigiit (Approx.)			87g	89g	85g

Contact Ratings

Contact	Configuration	2 Form C, DPDT (Delay output)
	le Voltage / le Current	240V AC, 30V DC / 10A
	m Permissible ng Frequency	1800 cycles per hour
	Resistive	10A 240V AC, 30V DC
Rated	Inductive	7A 240V AC, 30V DC
Load	Horse Power Rating	1/6 HP 120V AC, 1/3 HP 240V AC
132-	Electrical	500,000 op. minimum (Resistive)
Life	Mechanical	50,000,000 op. minimum



*For the value of the error against a preset time, whichever the largest, applies.

Part Numbering Guide

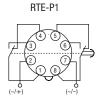
RTE series part numbers are composed of 4 part number codes. When ordering a RTE series part, select one code from each category. Example: **RTE-P1AF20**

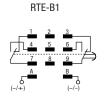
Part Numbers: RTE Series

	Description	Part Number Code	Remarks
① Series	RTE series	RTE	For internal circuits, see next page.
② Terminal Style	Pin	Р	Salast and only
© Terrilliai Style	Blade	В	Select one only.
	ON-delay, interval, cycle OFF, cycle ON	1	Each function group has different timing functions.
③ Function Group	ON-delay, cycle OFF, cycle ON, signal ON/ OFF delay, OFF-delay, one-shot	2	See page 832.
	100 to 240V AC(50/60Hz)	AF20	
① Input Voltage	24V AC(50/60Hz)/24V DC	AD24	
	12V DC	D12	

Part Numbers

Voltago	Power T	riggered	Start Input	t Triggered
Voltage	8-Pin	Blade	11-Pin	Blade
12V DC	RTE-P1D12	RTE-B1D12	RTE-P2D12	RTE-B2D12
24V AC/DC	RTE-P1AD24	RTE-B1AD24	RTE-P2AD24	RTE-B2AD24
100-240V AC	RTE-P1AF20	RTE-B1AF20	RTE-P2AF20	RTE-B2AF20


Time Range Determined by Time Range Selector and Dial Selector


	Dial	0 - 1	0 - 3	0 - 10	0 - 30	0 - 60
	Second	0.1 sec - 1 sec	0.1 sec - 3 sec	0.2 sec - 10 sec	0.6 sec - 30 sec	1.2 sec - 60 sec
Range	Minute	1.2 sec - 1 min	3.6 sec - 3 min	12 sec - 10 min	36 sec - 30 min	1.2 min - 60 min
Rar	Hour	1.2 min - 1 hr	3.6 min - 3 hr	12 min - 10 hr	36 min - 30 hr	1.2 hr - 60 hr
	10 Hours	12 min - 10 hr	36 min - 30 hr	2 hr - 100 hr	6 hr - 300 hr	12 hr - 600 hr

Timing Diagrams

Timers

RTE-P1, -B1

A

1. RTE-B1: Do not apply voltage to terminals #2, #5 & #8.

2. IDEC sockets are as follows: RTE-P1: SR2P-06* pin type socket, RTE-B1: SR3B-05* blade type socket, (*-may be followed by suffix letter A,B,C or U).

A: ON-Delay 1 (power start)

Set timer for desired delay, apply power to coil. Contacts transfer after preset time has elapsed, and remain in transferred position until timer is reset. Reset occurs with removal of power.

Item	Terminal Nur	nber	Operation	
Power	(1) 2 - 7 (2) A - B			
Delayed	(1) 1 - 4, 5 - 8 (2) 1 - 7, 3 - 9	(NC)		
Contact	(1) 1 - 3, 6 - 8 (2) 4 - 7, 6 - 9	(NO)		
ladia-ta-	PWR			
Indicator	OUT			
Set Time				

C: Cycle 1 (power start, OFF first)

Set timer for desired delay, apply power to coil. First transfer of contacts occurs after preset delay has elapsed, after the next elapse of preset delay contacts return to original position. The timer now cycles between on and off as long as power is applied (duty ratio 1:1).

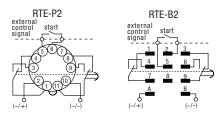
Item	Terminal Nu	nber			Op	eration			
Power	(1) 2 - 7 (2) A - B								
Delayed	(1) 1 - 4, 5 - 8 (2) 1 - 7, 3 - 9	(NC)							
Contact	(1) 1 - 3, 6 - 8 (2) 4 - 7, 6 - 9	(NO)							
Indicator	PWR								
nuicator	OUT								
Set Time			- T	T T					

B: Interval (power start)

Set timer for desired delay, apply power to coil. Contacts transfer immediately, and return to original position after preset time has elapsed. Reset occurs with removal of power.

Item	Terminal Nur	nber		Opera	tion	
Power	(1) 2 - 7 (2) A - B					
Delayed	(1) 1 - 4, 5 - 8 (2) 1 - 7, 3 - 9	(NC)				
Contact	(1) 1 - 3, 6 - 8 (2) 4 - 7, 6 - 9	(NO)				
1 5 .	PWR					
Indicator	OUT					
Set Time			•	т	-	

C: Cycle 3 (power start, ON first)


Functions in same manner as Mode C, with the exception that first transfer of contacts occurs as soon as power is applies. The ratio is 1:1. Time On = Time Off

Item	Terminal Nur	mber	Operation									
Power	(1) 2 - 7 (2) A - B											
Delayed	(1) 1 - 4, 5 - 8 (2) 1 - 7, 3 - 9	(NC)										
Contact	(1) 1 - 3, 6 - 8 (2) 4 - 7, 6 - 9	(NO)										
	PWR											
Indicator	OUT											
Set Time					<u>.</u>	-						

Timing Diagrams con't RTE-P2, -B2

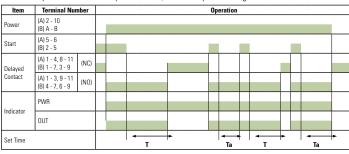
Timers

- 1. RTE-P2: Do not apply voltage to terminals #5, #6 & #7.
- 2. RTE-B2: Do not apply voltage to terminals #2, #5 & #8.
 3. IDEC sockets are as follows: RTE-P2: SR3P-05* pin type socket, RTE-B2: SR3B-05* blade type socket, (*-may be followed by suffix letter A,B,C or U).

A: ON-Delay 2 (signal start)

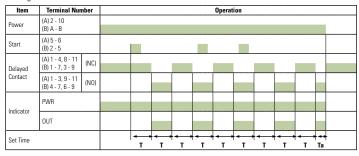
When a preset time has elapsed after the start input turned on while power is on, the NO output

Item	Terminal Nur	nber	Opera	ation	
Power	(A) 2 - 10 (B) A - B				
Start	(A) 5 - 6 (B) 2 - 5				
Delayed	(A) 1 - 4, 8 - 11 (B) 1 - 7, 3 - 9	(NC)			
Contact	(A) 1 - 3, 9 - 11 (B) 4 - 7, 6 - 9	(NO)			
Indicator	PWR				
mulcator	OUT				
Set Time			T T	+	


C: Cycle 4 (signal start, ON first)

When the start input turns on while power is on, the NO contact goes on. The output oscillates at a preset cycle (duty ratio 1:1).

ltem	Terminal Nur	nber					Operat	tion					
Power	(A) 2 - 10 (B) A - B												
Start	(A) 5 - 6 (B) 2 - 5												
Delayed	(A) 1 - 4, 8 - 11 (B) 1 - 7, 3 - 9	(NC)											
Contact	(A) 1 - 3, 9 - 11 (B) 4 - 7, 6 - 9	(NO)											
Indicator	PWR												
IIIuicatui	OUT												
Set Time				-	↓	-	-	-	-	-	-		
				T	T	T	T	T	T	T	T	Ta	


E: Signal OFF-Delay

When power is turned on while the start input is on, the NO output contact goes on. When a preset time has elapsed after the start input turned off, the NO output contact goes off.

B: Cycle 2 (signal start, OFF first)

When the start input turns on while power is on, the output oscillates at a preset cycle (duty ratio 1:1), starting while the NO contact off.

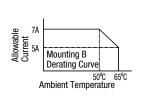
D: Signal ON/OFF-Delay

When the start input turns on while power is on, the NO output contact goes on. When a preset time has elapsed while the start input remains on, the output contact goes off. When the start input turns off, the NO contact goes on again. When a preset time has elapsed after the start input turned off, the

NO COIILA			 		 						
Item	Terminal Nur	nber			 Opera	tion			 		
Power	(A) 2 - 10 (B) A - B										
Start	(A) 5 - 6 (B) 2 - 5										
Delayed	(A) 1 - 4, 8 - 11 (B) 1 - 7, 3 - 9	(NC)									
Contact	(A) 1 - 3, 9 - 11 (B) 4 - 7, 6 - 9	(NO)									
Indicator	PWR										
indicator	OUT										
Set Time			- T	-	 •	←→ Ta	- T	-	 -	← Ta	

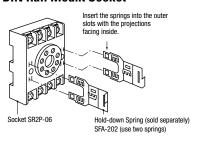
F: One-Shot (signal start)

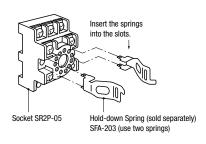
When the start input turns on while power is on, the NO output contact goes on. When a preset time has elansed the NO output contact goes off


Item	Terminal Nur	nber	Operation					
Power	(A) 2 - 10 (B) A - B							
Start	(A) 5 - 6 (B) 2 - 5							
Delayed Contact	(A) 1 - 4, 8 - 11 (B) 1 - 7, 3 - 9	(NC)						
	(A) 1 - 3, 9 - 11 (B) 4 - 7, 6 - 9	(NO)						
Indicator	PWR							
	OUT							
Set Time								

Temperature Derating Curves

Timers




Mounting B

Instructions

Installation of Hold-Down Springs DIN Rail Mount Socket

Switch Settings

- ①Operator Mode Selector②Scale Selector
- ③Time Range Selector
- Turn the selectors securely using a flat screwdriver 4mm wide (maximum).
 Note that incorrect setting may cause malfunction. Do not turn the selectors beyond their limits.
- 2. Since changing the setting during timer operation may cause malfunction, turn power off before changing.

Safety Precautions

Special expertise is required to use Electronic Timers.

- All Electronic Timers are manufactured under IDEC's rigorous quality control system, but users must add a backup or fail safe provision to the control system when using the Electronic Timer in applications where heavy damage or personal injury may occur should the Electronic Timer fail.
- Install the Electronic Timer according to instructions described in this catalog.
- Make sure that the operating conditions are as described in the specifications. If you are uncertain about the specifications, contact IDEC in advance.
- In these directions, safety precautions are categorized in order of importance under Warning and Caution.

Warnings

Warning notices are used to emphasize that improper operation may cause severe personal injury or death.

- Turn power off to the Electronic timer before starting installation, removal, wiring, maintenance, and inspection on the Electronic Timer.
- · Failure to turn power off may cause electrical shocks or fire hazard.

• Do not use the Electronic Timer for an **emergency stop circuit** or **inter-locking circuit**. If the Electronic Timer should fail, a machine malfunction, breakdown, or accident may occur.

Caution

Caution notices are used where inattention might cause personal injury or damage to equipment.

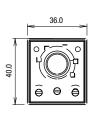
- The Electronic Timer is designed for installation in equipment. Do not install
 the Electronic Timer outside equipment.
- Install the Electronic Timer in environments described in the specifications. If
 the Electronic Timer is used in places where it will be subjected to high-temperature, high-humidity, condensation, corrosive gases, excessive vibrations,
 or excessive shocks, then electrical shocks, fire hazard, or malfunction could
 result
- Use an IEC60127-approved fuse and circuit breaker on the power and output line outside the Electronic Timer.
- Do not disassemble, repair, or modify the Electronic Timer.
- When disposing of the Electronic Timer, do so as industrial waste.

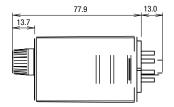
Accessories

DIN Rail Mounting Accessories

DIN Rail/Surface Mount Sockets and Hold-Down Springs

	DIN Rail Mount Socket		Applicable Hold-Down Springs		
Style	Appearance	Use with Timers	Part Number	Appearance	Part Number
11-Pin Screw Terminal (dual tier)	A STATE	RTE-P2	SR3P-05		SFA-203
11-Pin FingerSafe Socket		RTE-P2	SR3P-05C	630	
8-Pin Screw Terminal	SECRE 1 5		SR2P-06		
8-Pin Fingersafe Socket		RTE-P1	SR2P-05C		SFA-202
11-Blade Screw Terminal	Care The same	RTE-B1 RTE-B2	SR3B-05		
DIN Mounting Rail Length 1000mm		_	BNDN1000		

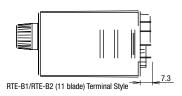

Panel Mounting Accessories

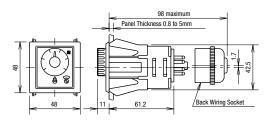

Flush Panel Mount Adapter and Sockets that use an Adapter

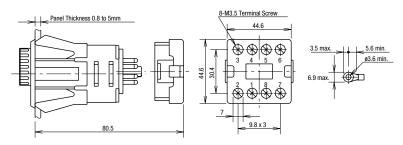
Accessory	Description	Appearance	Use with	Part No.
Panel Mount Adapter	Adaptor for flush panel mounting RTE timers		All RTE timers	RTB-G01
	8-pin screw terminal		RTE-P1	SR6P-M08G
	11-pin screw terminal	(Shown: SR6P-M08G Wiring Socket Adapter)	RTE-P2	SR6P-M11G
Sockets for use with Panel Mount Adapter	8-pin solder terminal		RTE-P1	SR6P-S08
	11-pin solder terminal		RTE-P2	SR6P-S11

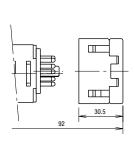
Timers

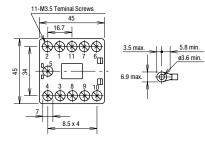
Dimensions




RTE-P1 (8 pin) Terminal Style


RTE-P2 (11 pin)Terminal Style


Panel Mount Adapter RTE Timer, 8-Pin and 11-Pin with SR6P-S08 or SR6P-S11



RTE Timer, 8-Pin with SR6P-M08G

RTE Timer, 11-Pin with SR6P-M11G

General Instructions for All Timer Series

Load Current

With inductive, capacitive, and incandescent lamp loads, inrush current more than 10 times the rated current may cause welded contacts and other undesired effects. The inrush current and steady-state current must be taken into consideration when specifying a timer.

Contact Protection

Switching an inductive load generates a counter-electromotive force (back EMF) in the coil. The back EMF will cause arcing, which may shorten the contact life and cause imperfect contact. Application of a protection circuit is recommended to safeguard the contacts.

Temperature and Humidity

Use the timer within the operating temperature and operating humidity ranges and prevent freezing or condensation. After the timer has been stored below its operating temperature, leave the timer at room temperature for a sufficient period of time to allow it to return to operating temperatures before use.

Environment

Avoid contact between the timer and sulfurous or ammonia gases, organic solvents (alcohol, benzine, thinner, etc.), strong alkaline substances, or strong acids. Do not use the timer in an environment where such substances are prevalent. Do not allow water to run or splash on the timer.

Vibration and Shock

Excessive vibration or shocks can cause the output contacts to bounce, the timer should be used only within the operating extremes for vibration and shock resistance. In applications with significant vibration or shock, use of hold down springs or clips is recommended to secure a timer to its socket.

Time Setting

The time range is calibrated at its maximum time scale; so it is desirable to use the timer at a setting as close to its maximum time scale as possible. For a more accurate time delay, adjust the control knob by measuring the operating time with a watch before application.

Input Contacts

Use mechanical contact switch or relay to supply power to the timer. When driving the timer with a solid-state output device (such as a two-wire proximity switch, photoelectric switch, or solid-state relay), malfunction may be caused by leakage current from the solid-state device. Since AC types comprise a capacitive load, the SSR dielectric strength should be two or more times the power voltage when switching the timer power using an SSR.

Generally, it is desirable to use mechanical contacts whenever possible to apply power to a timer or its signal inputs. When using solid state devices, be cautious of inrushes and back-EMF that may exceed the ratings on such devices. Some timers are specially designed so that signal inputs switch at a lower voltage than is used to power the timer (models designated as "B" type).

Timing Accuracy Formulas

Timing accuracies are calculated from the following formulas:

Repeat Error = ± 1 x Maximum Measured Value – Minimum Measured Value x 100%

2 Maximum Scale Value

Voltage Error = $\pm \frac{\text{Tv} - \text{Tr x } 100\%}{\text{T}}$

Tr

Tv: Average of measured values at voltage V Tr: Average of measured values at the rated voltage

Temperature Error $= \pm \frac{\text{Tt} - 720 \times 100\%}{720}$

Tt: Average of measured values at °C T20: Average of measured values at 20°C

Setting Error = ± Average of Measured Values - Set Value x 100%

T20

Maximum Scale Value